
1

Program Analysis for High-Value
Smart Contract Vulnerabilities
(or how to tame state explosion in
smart contracts)

Yannis Smaragdakis

+ U.Athens

jointly with
Neville Grech, Sifis Lagouvardos,
Konstantinos Triantafyllou, Ilias Tsatiris,
Yannis Bollanos, Tony Rocco Valentine

Research positions
available (ERC)

2

Yannis Smaragdakis

Smart Contracts?

● Perfect domain for program analysis/verification!
○ correctne$$ crucial

3

#
#
#

Yannis Smaragdakis

Smart Contracts?

● Perfect domain for program analysis/verification!
○ correctne$$ crucial
○ code public
○ executions public
○ manageable size / essential complexity

4

#
#
#

Yannis Smaragdakis

Smart Contracts?

● Perfect domain for program analysis/verification!
○ correctne$$ crucial
○ code public
○ executions public
○ manageable size / essential complexity

5

#
#
#

Yannis Smaragdakis

My Research/Dedaub Technology:
Creating Programs that Understand Programs

● Research in Static Analysis
○ create a model of all possible program behaviors

● Since 2018: applying to smart contracts
 [OOPSLA’18, ICSE’19, OOPSLA’20, PLDI’20, OOPSLA’21, CACM, OOPSLA’22, SBC’23, ISSTA'25]

● All analyses specified declaratively
○ logical rules (thousands of them)

LoopBoundBy(loop, var) :-
 InductionVar(i, loop),
 !InductionVar(var, loop),
 Flows(var, condVar), Flows(i, condVar),
 LoopExitCond(condVar, loop).

6

#
#
#

A Gadget

7

Yannis Smaragdakis

A Technical Topic: Transitively Closed
Relations

● We all know transitively closed relations

r(x,y) ∧ r(y,z) ⇒ r(x,z)

● In Datalog:
R(x,z) :- R(x,y), R(y,z).

8

#
#
#

Yannis Smaragdakis

Transitively Closed Relation

● Say we have Edge, want to compute its transitive
closure, Path

● Base Case:
Path(x,y) :- Edge(x,y).

● Then, straightforward:
Path(x,z) :- Path(x,y), Path(y,z).

9

#
#
#

Yannis Smaragdakis

Transitively Closed Relation

● Say we have Edge, want to compute its transitive
closure, Path

● Base Case:
Path(x,y) :- Edge(x,y).

● Then, straightforward:
Path(x,z) :- Path(x,y), Path(y,z).

● Much better:
Path(x,z) :- Path(x,y), Edge(y,z).

10

#
#
#

Yannis Smaragdakis

Transitively Closed Relation

● Say we have Edge, want to compute its transitive
closure, Path

● Base Case:
Path(x,y) :- Edge(x,y).

● Then, straightforward:
Path(x,z) :- Path(x,y), Path(y,z).

● Much better:
Path(x,z) :- Path(x,y), Edge(y,z).

○ Evaluated as:
Path(x,z) :- ΔPath(x,y), Edge(y,z).

11

#
#
#

Yannis Smaragdakis

A Very Efficient Algorithm!

● Path(x,y) :- Edge(x,y).
Path(x,z) :- Path(x,y), Edge(y,z).

● This is a pretty good algorithm for TC
○ likely optimal under some conditions (e.g.,

sparseness, trees)
○ not just in Datalog
○ but Datalog takes care of many efficiency concerns

12

#
#
#

Yannis Smaragdakis

A New Problem:
Transitive Re-Closure (Incremental Closure)

● We have Path, we are given a Delta with extra paths,
compute ExtPath

● Can we avoid recomputing TC from scratch?
○ may even be impossible, e.g., no access to Edge, only Path

13

#
#
#

Yannis Smaragdakis

A New Problem:
Transitive Re-Closure (Incremental Closure)

● We have Path, we are given a Delta with extra paths,
compute ExtPath

● Can we avoid recomputing TC from scratch?
○ may even be impossible, e.g., no access to Edge, only Path

● Straightforward:
Path(x,y) :- Delta(x,y).
ExtPath(x,y) :- Path(x,y).
ExtPath(x,z) :- ExtPath(x,y), Path(y,z).

14

#
#
#

Yannis Smaragdakis

A New Problem:
Transitive Re-Closure (Incremental Closure)

● We have Path, we are given a Delta with extra paths,
compute ExtPath

● Can we avoid recomputing TC from scratch?
○ may even be impossible, e.g., no access to Edge, only Path

● Straightforward:
Path(x,y) :- Delta(x,y).
ExtPath(x,y) :- Path(x,y).
ExtPath(x,z) :- ExtPath(x,y), Path(y,z).

● Simply awful in performance!
○ (e.g., Dataset A: 28s + 215s, Dataset B: 8m + 419m)

15

#
#
#

Yannis Smaragdakis

Can We Emulate the Insight of Efficient TC?

● We need two new concepts:
○ DeltaLeft(x,y): new path that starts with a delta

edge on the left
○ DeltaOneLeft(x,y): new path that starts with a

delta edge on the left and contains no other delta
edges

● Crucial: use negation for performance!

16

#
#
#

Yannis Smaragdakis

Transitive Re-Closure (Incremental Closure)

DeltaOneLeft(x,y) :- Delta(x,y), !Path(x,y).
DeltaOneLeft(x,z) :- Delta(x,y), Path(y,z), !Path(x,z).

DeltaLeft(x,y) :- DeltaOneLeft(x,y).
DeltaLeft(x,z) :-
 DeltaOneLeft(x,y), DeltaLeft(y,z), !Path(x,z).

ExtPath(x,y) :- Path(x,y).
ExtPath(x,y) :- DeltaLeft(x,y).
ExtPath(x,z) :- Path(x,y), DeltaLeft(y,z), !Path(x,z).

17

#
#
#

Yannis Smaragdakis

Input?

● (Dataset A: 28s + 11s, Dataset B: 8m + 4m)
● This should be a pretty good general transitive

re-closure algorithm
○ (without taking advantage of special structure, e.g., SCCs,

which can be added orthogonally)

18

#
#
#

19

Back to ...

Program Analysis for High-Value
Smart Contract Vulnerabilities
(or how to tame state explosion in
smart contracts)

Yannis Smaragdakis

A Paradox

So much $ value, so much research, so little impact!
● Perez and Livshits [2021]: research tools produce lots of

“true” warnings, only 0.27% of funds exploited
● Security experts consider automated tools to be

near-worthless
○ @samczsun: "tooling can't find the bugs that matter so at

best we're just making sure people don't accidentally use
blockhash on the current block or something”

○ @gakonst: “for an experienced contract author, it’s never
the automated tooling that finds the bugs that kill them”

20

#
#
#

And Yet…

21

Dedaub
Vulnerability
Disclosures

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

22

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

23

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

24

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

25

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

26

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

27

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

28

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

29

#
#
#

Yannis Smaragdakis

Vulnerability Disclosures (since 2021)

30

● Many major security vulnerabilities, 11 bug bounties of
over $3M total
○ by DeFi Saver, Dinngo/Furucombo, Primitive, Armor, Vesper, BT

Finance, Harvest, Multichain/Anyswap, Rari/Tribe DAO, Uniswap

#
#
#
https://media.dedaub.com/ethereum-pawn-stars-5-7m-in-hard-assets-best-i-can-do-is-2-3m-b93604be503e
https://media.dedaub.com/look-ma-no-source-hacking-a-defi-service-with-no-source-code-available-c40a6583f28f
https://medium.com/immunefi/inside-the-war-room-that-saved-primitive-finance-6509e2188c86
https://thedefiant.io/dedaub-claims-250k-in-bounty-for-primitive-finance-bug/
https://media.dedaub.com/yield-skimming-forcing-bad-swaps-on-yield-farming-397361fd7c72
https://media.dedaub.com/yield-skimming-forcing-bad-swaps-on-yield-farming-397361fd7c72
https://media.dedaub.com/yield-skimming-forcing-bad-swaps-on-yield-farming-397361fd7c72
https://medium.com/immunefi/harvest-finance-uninitialized-proxies-bug-fix-postmortem-ea5c0f7af96b
https://media.dedaub.com/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49f
https://medium.com/@JackLongarzo/rari-capital-fuse-security-upgrade-report-e5d154c16250
https://media.dedaub.com/uniswap-bug-bounty-1625d8ff04ae

How???

31

Yannis Smaragdakis

Background I — Analysis Questions

32

● Taint analysis is excellent example
○ tainted value: controllable by an untrusted

caller
● Dominant in practice: most analysis questions

hinge on tainting

#
#
#

Yannis Smaragdakis

Taint + Sensitive Operations

33

function withdraw(uint amount) {
 …
 token.transferFrom(owner, spender, amount);
 …
}

● Where does owner come from?
● Is the code even reachable for an untrusted caller?
● What about spender?

#
#
#

Yannis Smaragdakis

Taint + Reentrancy

34

function withdraw(uint amount) {

 if (credit[investor] >= amount) {
 investor.call.value(amount)();
 credit[investor] -= amount;
 }
}

● Where does investor come from? Can it be contract?
● Is the code even reachable for an untrusted caller?

#
#
#

Yannis Smaragdakis

Taint + Reentrancy

35

function withdraw(uint amount) {
 require(msg.sender == DAO || msg.sender == owner);
 if (credit[investor] >= amount) {
 investor.call.value(amount)();
 credit[investor] -= amount;
 }
}

● Where does investor come from? Can it be contract?
● Is the code even reachable for an untrusted caller?

#
#
#

Yannis Smaragdakis

Background II — Analysis Answers?

36

● Principle:
Static Analysis is a game of balancing 3
elements
○ precision
○ completeness
○ performance

#
#
#

Static Analysis Is Poetry, Not Prose

37

Yannis Smaragdakis

Example

38

function whichPaths(uint x) public (returns uint y) {
 y = 3;
 if (x % 2 != 0) { y++; }
 if (x % 4 != 0) { y = y * y; }
}

● Possible values: 3, 9, 16
○ cannot satisfy first path but not second: if not

divisible by 2, certainly not divisible by 4
● If an analysis says: 3, 9, 4, 16, is it worse?

#
#
#

Yannis Smaragdakis

Static Analysis is Poetry, not Prose

39

● Execution/model checking:
The old man sat on the bench in the park. He
watched as children played on the swings and slides.
He smiled as he remembered his own childhood.

● Static analysis:
Old man, children play, memories smile

#
#
#

First Weapon:
Symbolic Value-Flow
(Symvalic) Analysis

40

[OOPSLA’21]

Yannis Smaragdakis

Symvalic (Symbolic + value-flow) Analysis

● What is it?
○ a precise, path-sensitive static analysis
○ that mixes values and symbolic expressions

■ Datalog fixpoint + symbolic reasoning
○ gets scalable precision through

dependencies
■ a generalization of context sensitivity

○ main client: taint analysis
41

#
#
#

Yannis Smaragdakis

The Dirty Secret of Program Verification
(for security)

● Nothing works!
● Execution-based approaches

(symbolic/dynamic-symbolic execution, model checking)
are precise but incomplete
○ state explosion problem

● Static analysis approaches are complete but
imprecise

42

#
#
#

Yannis Smaragdakis

Execution-Based Approaches
(symbolic execution, model checking): Horizontal

address admin ; // set up at construction, not in contract code

function withdrawToken (IERC20 token, uint256 amount, address sendTo) external {
 onlyAdmin();

 uint256 adjusted = amount * 103 / 100;

 if (amount >= 10000 && amount < 100000)
 token.transfer(sendTo,adjusted) ; …
}

function onlyAdmin() internal view {
 require (msg.sender == admin, "only admin");
}

adjusted token amount sendTo admin

1030 0x6f.. 1000 0x3f6.. 0x5a1..

43

#
#
#

Yannis Smaragdakis

Execution-Based Approaches
(symbolic execution, model checking): Horizontal

address admin ; // set up at construction, not in contract code

function withdrawToken (IERC20 token, uint256 amount, address sendTo) external {
 onlyAdmin();

 uint256 adjusted = amount * 103 / 100;

 if (amount >= 10000 && amount < 100000)
 token.transfer(sendTo,adjusted) ; …
}

function onlyAdmin() internal view {
 require (msg.sender == admin, "only admin");
}

adjusted token amount sendTo admin

1030 0x6f.. 1000 0x3f6.. 0x5a1..

44

#
#
#

Yannis Smaragdakis

Execution-Based Approaches
(symbolic execution, model checking): Horizontal

address admin ; // set up at construction, not in contract code

function withdrawToken (IERC20 token, uint256 amount, address sendTo) external {
 onlyAdmin();

 uint256 adjusted = amount * 103 / 100;

 if (amount >= 10000 && amount < 100000)
 token.transfer(sendTo,adjusted) ; …
}

function onlyAdmin() internal view {
 require (msg.sender == admin, "only admin");
}

adjusted token amount sendTo admin

1030 0x6f.. 1000 0x3f6.. 0x5a1..

45

γ = (ρ, Σ, Η)

#
#
#

Static Analysis Is Poetry, Not Prose

46

Yannis Smaragdakis

address admin ; // set up at construction, not in contract code

function withdrawToken (IERC20 token, uint256 amount, address sendTo) external {
 onlyAdmin();

 uint256 adjusted = amount * 103 / 100;

 if (amount >= 10000 && amount < 100000)
 token.transfer(sendTo,adjusted) ; …
}

function onlyAdmin() internal view {
 require (msg.sender == admin, "only admin");
}

Value-Flow Static Analysis Approaches:
Vertical (“sets of values”)

adjusted

1030

515

31

token

0x6f..

owner

user

0xe22..

amount

1000

500

30

47

#
#
#

Solved state explosion …
destroyed precision

48

Yannis Smaragdakis

address admin ; // set up at construction, not in contract code

function withdrawToken (IERC20 token, uint256 amount, address sendTo) external {
 onlyAdmin();

 uint256 adjusted = amount * 103 / 100;

 if (amount >= 10000 && amount < 100000)
 token.transfer(sendTo,adjusted) ; …
}

function onlyAdmin() internal view {
 require (msg.sender == admin, "only admin");
}

Symvalic Analysis Adds Dependencies

adjusted

1030

515

31

token

0x6f..

owner

user

0xe22..

amount

1000

500

30

49

#
#
#

Yannis Smaragdakis

Symvalic Analysis Basics:
Symbolic Expressions + Values

x 0x0
x 0x1
x [LT, 0x0, <<owner-value>>]
x [LT, <<owner-value>>, 0x0]
x [LT, <<user1-value>>, 0x0]
y 0x0
y 0x1
y 0xc0
y [AND, 0xff, [DIV, <<owner-value>>, 0x100]]
y [ISZERO, [AND, 0xff, <<owner-value>>]]

Total: 52 479 rows

50

#
#
#

Yannis Smaragdakis

Symvalic Analysis with Dependencies

x 0x0 [y -> 0x0, z -> 0x1] [caller -> owner]
x 0x1 [y -> 0x0, z -> 0x1] [caller -> user]
x [LT, 0x0, <<owner-value>>] [y -> <<owner-value>>] [caller -> owner]
...
Total: 11 121 520 rows

51

#
#
#

Yannis Smaragdakis

Symvalic Analysis with Dependencies

Local
dependencies

“Global”
dependencies

52

x 0x0 [y -> 0x0, z -> 0x1] [caller -> owner]
x 0x1 [y -> 0x0, z -> 0x1] [caller -> user]
x [LT, 0x0, <<owner-value>>] [y -> <<owner-value>>] [caller -> owner]
...
Total: 11 121 520 rows

#
#
#

Yannis Smaragdakis

Approach

● Datalog-based analysis rules
● Appealing to symbolic solver/theorem prover also

expressed as Datalog rules
● Limited top-down reasoning

○ “solve equations”
● Bottom up reasoning, up to bounded expression size

53

#
#
#

Yannis Smaragdakis

Architecture

54

#
#
#

Second Weapon:
Corpus Analysis

55

Yannis Smaragdakis

Static Analysis Gets Us Answers.
What Is the Question?

● Example: “is the first argument of a swap call
tainted?”

● How do we know that swap is special?
How do we know that the first argument has
monetary significance?

● One answer: have humans specify
○ not optimal…

56

#
#
#

Yannis Smaragdakis

Corpus Analysis: Learn from What Deployed
Contracts Do!

Which function signatures/arguments …
○ typically have monetary significance

■ e.g., flow to transfer/transferFrom
○ perform initialization
○ do a delegatecall
○ return values that can be manipulated by an untrusted

caller (by changing contract state)
○ allow reentrancy
○ check permissions of their caller
○ perform guarded/unguarded external calls of monetary

significance
○ … 57

#
#
#

Yannis Smaragdakis

Corpus Analysis Summarizes Behavior in Two
Ways

● What does a contract do?
○ so that its callers can be analyzed better

● What is the usual behavior of a contract’s/function’s
callers?
○ so that callers can be analyzed for deviations

58

#
#
#

Yannis Smaragdakis

All Recursively, Non-Trivially

● E.g.,
○ bar is a function known to call functions on its

second argument
○ (contract A) function foo makes external call to

bar (contract X) with tainted second argument
○ (contract A) foo is reentrant

59

analyze function
body

analyze calls to
function

#
#
#

Yannis Smaragdakis

Overall

● Most corpus analysis insights are simple:
○ e.g., “first argument of swap rarely tainted, but it is

here”
● We have the benefit of a service with all deployed

Ethereum contracts
○ works well with Dedaub’s public tooling

60

#
#
#

Insights

61

Yannis Smaragdakis

Thoughts on Static Analysis in Industry vs
Academic Research

● Industry: great when stupid solutions work well
● Academia: catastrophic

○ anecdotes: initializers, ML for parameter settings

62

#
#
#

Yannis Smaragdakis

Consider Two Questions

For a good analysis:

● Out of 100 contracts, how many would you expect to be
flagged?

● Out of 100 flagged contracts, how many warnings do

you expect to be valid?

63

#
#
#

Yannis Smaragdakis

Thoughts on Static Analysis for Security
● Realistic warning rates?

○ AccessibleSelfDestruct: 5.11%
○ ArithmeticErrorHighConfidence: 0.43%
○ BadRandomness: 16.1%
○ BlockReachableByInconsistentAssertionPaths: 0.43%
○ CallToThis: 0.00%
○ FlashLoanCallbackUncheckedSender: 0.00%
○ NoChainidInECDSASignedData: 2.98%
○ ProxyForTransfer: 3.40%
○ ProxyForTransferFrom: 0.00%
○ ProxyForTransferFromLowConfidence: 1.70%
○ ProxyForTransferFromMediumConfidence: 0.43%
○ ReachableAssertionFailure: 23.83%
○ Reentrancy: 0.85%
○ SuspiciousFunctionCallScaling: 0.00%
○ TaintedDelegateCall: 0.85%
○ UniswapPriceManipulationPotentialHighConfidence: 0.00%
○ UniswapTaintedTokenHighConfidence: 0.00

64

#
#
#

Yannis Smaragdakis

Thoughts on Static Analysis in Industry vs
Academic Research

● We have the wrong metrics for anything that counts
● Warning rates at 0.5% seem useless

○ “199 out of 200 contracts are already correct, why
is it interesting to get that number to 200?”

● But it’s these warnings that find high-value
vulnerabilities!

65

#
#
#

Yannis Smaragdakis

Thoughts on Static Analysis in Industry vs
Academic Research

● We have the wrong metrics for anything that counts
● <60% precision in an analysis is hardly a publishable

result!
● But even 5% precision is awesome for high-value

vulnerabilities
○ $$$ 1-of-20 times!

66

#
#
#

Yannis Smaragdakis

Consider Two Questions

For a “good” analysis:

● Out of 100 contracts, how many would you expect to be
flagged?

 0.5 ?
● Out of 100 flagged contracts, how many warnings do

you expect to be valid?

 5 ?

67

#
#
#

That’s all, folks!
Yannis Smaragdakis

library.dedaub.com

https://contract-library.com

Research positions
available (ERC)

69

