
HYPER HOARE LOGIC

Peter Müller

Joint work with Thibault Dardinier and Anqi Li



2

Program Properties

Correctness Absence of bugs 

Reachability Presence of bugs 

Determinism Hash functions 

Transitivity Comparators 

Non-interference Secure information flow 

Generalized non-interference Secure information flow 

Existence of a minimum Optimization algorithms 



Our goal:

Develop a program logic that can (dis-)prove

arbitrary program hyperproperties



4

Hyper-Triples

Properties over sets of 

reachable states



5

Examples

▪ Correctness

▪ Reachability

▪ Non-determinism and non-interference ()

▪ Quantification over executions becomes explicit in assertions

▪ Hyper-triples can express over-approximate properties (like Hoare triples) and 

under-approximate properties (like triples in Incorrectness logic)



6

Examples: Tracking Executions

▪ Attempt to express monotonicity ()

▪ Use logical variables to track different executions

- Logical variables cannot be changed by program executions:

▪ Monotonicity



Core Rules



8

Commands

▪ We use the usual encodings



9

Basic Rules



10

Control Flow

▪ Post-states of a non-deterministic choice is union of post-states of the branches

▪ Iteration repeats this choice a finite or infinite number of times



11

Command-Independent Rules

▪ Rule of consequence

▪ Exist-rule is necessary for completeness



12

Soundness, Completeness, Expressiveness

▪ The core rules are sound and complete

▪ A program hyperproperty relates the pre- and post-states of terminating 

executions (a set of pairs of states)

▪ Every program hyperproperty can be expressed as a hyper-triple

▪ The negation of a hyper-triple can be expressed as a hyper-triple



Syntactic Rules



14

Syntactic Assertions

▪ Syntactic hyper-assertions interact with sets of states only through quantification

- This limitation is not a relevant restriction in practice



15

Syntactic Proof Rules

▪ The assignment rule performs a syntactic substitution for each state look-up

▪ The substitution in the havoc rule introduces a quantified value v for each 

occurrence of (x)



16

Syntactic Proof Rules

▪ The syntactic transformation in the assume rule also depends on the quantifier

▪ The proof rule for sequential composition, the rule of consequence, 

and the exist-rule remain unchanged



17

Rules for Synchronized Loops

▪ For potentially non-terminating loops

▪ For terminating loops

d is the ranking function 

< is well-founded

D is a fresh logical variable



Automation



21

General Approach

▪ Use an intermediate verification 

language (IVL) and off-the-shelf 

verifier such as Boogie, Why3, or 

Viper to encode programs, 

assertions, and proof rules

▪ Model all executions of the input 

program by a single execution of 

the IVL program

▪ Represent states as maps from 

variables to values

▪ Track sets of states in IVL variables 



22

Problem: Matching Loops



23

Over- and Under-Approximating Reachable States

▪ We track separately a lower 

bound S and an upper bound 

S on the set of states

▪ We do not assume in general 

that they are equal

▪ This encoding eliminates 

matching loops



24

Encoding of Assertions



25

Example




