Gambit:

Sequential Consistency

without coordination in

Distributed Programming
Languages

We’re building a sequentially-
consistent programming
language atop weakly-
consistent replicated storage

[Memory] Consistency in Distributed Storage Systems

11

ﬁ ﬁ

[Memory] Consistency in Distributed Storage Systems

12

Lakka
Adkka

atika
atika

WX T e
Kontogiannatika The iSle Of Paxos Hard to
A mplement

Efficiently!

Tikalika
Manesatika
Maveoatika

Magazia
MayaZia

S leromonachos
Mpoikatika lepopovayog

Mrnotkdtika

Opoulatika

BAaxomouAdartika

, Ak
Par.0d. Loga™

MpogdanatiH
Mnoybavdrt

Velianitatik
BeAlavitdrt

Linearizability: Strong Consistency

13

The CAP Theorem

A vailability

Tolerance to network
" artitions

PODC Keynote, July 19, 200C

CagJle

= Databases

Medium
Understanding CAP the...

Let's talk
about the
CAP Theorem

>

© YouTube

CAP Theorem (Data Engineering with A._..

M@ Linkedin
CAP Theorem _..

cap theorem talk

CAP Theorem — An impossible ... The CAP Theorem in ...

3305 16 tha Witen e e
300 o2 22 the Saree LT

[LinkedIn
CAP Theorem Principle

&8 DEV Community Medium

CAP Theorem: Why You Can't ...

Beginners -CAP Theorem | by ...

Understanding CAP Theore...

Cansistency
\ ce
Partition
Aiabiy Toterance
[® Hazelcast

What is the CAP Theorem...

CAP Theorem

PARTITION
TOLERANCE

Bikas Katwal - Medium
MongoDB vs Cassandra vs...

All Images Videos Shopping Maps Books News More ~ Tools ~
':\’m * Nosql databases Pacelc theorem Mongodb Distributed systems = Partition tolerance ‘ System design Distributed computing .= =
= 3 < Shands Ty Sola t
; P CDEE) he (AP thowm 3
@ s oo L J—— i .
[Py Consiste: MySaL e / ™ i digtributed aptens, || F you et 45 be Ay
ney { ‘ \ udedt yov 4a0? | 22DY GG
HedsEAn, | T, womheNgar updsteddats | Consistency | ST (,:':;D =
avallabiiny ox: HBase, Mongol: . BN\ fs / ? o | heloilstn)
L0 suroun, CA\ Cp~ oo o A) fombe g iy R |
b AR (PP W ()| .- V- 4
[Partition- Avsnakn o Availability (Tf;anmon /’ AT K 2oy - s A Partition
. e uORIERy | Yyt | kT o et | Toerance
] A AP o P Y,
AP:
s L~ S System can be ditribated and % §
& - T Wcovnoe pmtdpugnooipmd 7 =t oo
casandra Veldesnort, DynamoD8, etc
Medium 2 GeeksforGeeks Ashvin Choudhary - Medium W Wikipedia * Julia Evans Medium [H) Hazelcast

CAP theorem - Wikip... A Critique of the CAP Theor... CAP Theorem Expl...

CAP Thesrem Drsrreeces =
€ Ganwnroncy A Senlabiing P Berrtes Wheene
0 2-a L3N S
® 2 . © ~
© > VY, c{m 73 oo
P =
°° v » X -t e e * 'E
el - ¢ “ - o 9 -
= ¥ .. 8, -
- Ge G g mme -
4 erera
tetea - —
[

Daily.dev
CAP Theorem Explained: Consistency

@ Curious Engineer - Subs. ..
What is CAP theorem? ...

9 ByteByteGo
ByteByteGo | CAP Theorem: O...

SRS 7 o
/ \ Al 3013 300 e
1 hinctica even ROMS game data a1 the
9w N Mo with node talures same tme
faency ey} (dstawy et}
} 2
- — o
ey e Partition
Tolerance
)i \ / \ System contues 10 function
/ even the commuricaton
d 5 ! faios catwesn nodos
‘ S O SR
@ Manh Phan W Wikipedia ® Manh Phan

CAP Theorem of the distributed sy... PACELC design prin... CAP Theorem of the distri...

What is the CAP Theo...

Consistency availability

Availa

Jonsistency

@ ScyliaD
What is (

CAP Th
Is Easy
Learn

(But Oft

averhy|

© YouTube
Availability ve

© YouTube
How Lance

atika

atika
Aro| :
Apw) oratika

g L Ka
Fpappatikalika
Manesatika
Maveoatika

Magazia
MayaZia

Mpoikatika
Mrnotkdtika

Longos
Adyyog

Hardto
Impossible to
Implement
Efficiently!

The isle of Paxos

Kontogiannatika
Kovtoytavvartika

Kagkatika
Kaykatika

o

leromonachos
lepopovayog

®poulatika
BAaxomouAdartika
Dar.0d. Logue™KY
MpogdanatiH

Mnoybavdrt

Velianitatik
BeAlavitdrt

Linearizability: Strong Consistency

18

The speed of light is slow
We have outgrown Paxos \
Replicas will (temporarily) diverge P

X - :

This is hard to
program against!

This IS now
standard!

X POLICE "2 DX POLICE "2

FNQ.E R BO

o

TARDIS
Database

TARDIS TARDIS
Database Database

Weak Consistency

20

Consider: an online game service

Correct under surprisingly
delayed latency

replication insensitive

RECORD WINS AND PERFORM ONLINE RUNS TOURNAMENTS
LOSSES MATCHMAKING

22

Gambit:

Provably consistent
programs atop
weakly-consistent
replication

In three easy steps!

Step 1:

change our
assumptions about
distributed interfaces

Linearizability is needlessly strong

ﬂ?rocessor architectures\ ﬂanguage memory models

e g

ih’

& /

At most sequential consistency (weaker than linearizability)

We have the wrong object semantics
v

w»

| -
Arbitrary read/write to: ‘ v
* any location ’
 atanytime |

This is not how real systems work #’

Recording
WIins

concurrency on

match calls!
transaction
match(player w, player 1){
wins[w]++;
losses[1l]++;

We want

increment,
read/write

not

wins: player - int

losses: player ~ int

29

New assumptions

Provide sequential Program in terms of higher-
consistency level replicated datatypes
with restricted interfaces

The CAP Theorem

A vailability

Tolerance to network
" artitions

PODC Keynote, July 19, 200C

Step 2:

Reliable observations for
building sequentially-
consistent applications
with weak replication

Reliable Observations

* Form guarantees about distributed state
* More restricted mutations allow more general observations

wins[c] 2 15

No concurrent mutations can violate

35

Reliable Observations

Monotonic object: Threshold observation:
mutations are inflationary comparisons with

with respect to some constants are stable
order. oredicates

grow monotonically

Single-writer Multi-writer
registers Registers

iIncrement-only
counters

Constants grow-only sets

(

I

More Observations More Mutgtions

Programming monotonically

Name is

Boaty
* |If all shared objects only McBoatface

grow...

* And we only observe =
thresholds... least this many

wins

e Or stable characteristics...

* Our program can be
sequentially consistent

under weak replication Get out

of CAP!

L L

37

Can we build something useful with
monotonicity?

Yes! many common application
behaviors are monotonic!

—
thlnS: player » int

Playathon!

)
— losses: player ~ int

transaction playathon check(p) {
int played = wins[p] + losses[p];

if (played > target) return “thon-win!”;

40

Mixing
Consistency
ACross

Transactions

41

—
mes: player » int

Playathon!

)
— losses: player ~ int

transaction playathon check(p) {
int played = wins[p] + losses[p];

if (played > target) return “thon-win!”;

else abort;

How do we expose this
reasoning programmatically?

42

Step 3: expose
monotonic
observations via a

programming language

Require only weak replication

Support imperative / object-
oriented programming

Our goals: :
Share user-provided datatypes

Guarantee sequential
consistency

Big idea: refine datatype
Interfaces via shared
restrictions

interface Counter{ interface Map<K,V>{
void inc(); void add(K k, V v);
void dec(); void clear(E e);
int get(); Maybe<V> lookup (K k);
void set(int 1); }

}

Map<Player,Counter> wins;
Map<Player,Counter> losses;

interface Counter{
void inc();
void dec();
int get();
void set(int 1);

restriction Up for Counte
allows inc;
allows mon +ge

}

interface Map<K,V>{
void add(K k, V v);
void remove(K k);
Maybe<V> lookup (K k);

Restricts get to positive,
mohnotonic uses

restriction Down for Counter{
allows mon -get

}

restriction CheckOnly for Map{
allows mon +lookup;

}

restriction Write for Counter{
allows set;

}

restriction RemoveOnly for Map{
allows remove;
allows mon -lookup;

restriction Up for Counter{ restriction CheckOnly for Map{
allows inc; allows mon +lookup;

allows mon +get }

shared[Up] Counter c;

Statically Guaranteed

(.: :i.nc(); monotonic!
if (c.get() > 13){ . . &}

ﬁelse {..}

restriction Up for Counter{ restriction CheckOnly for Map{
allows inc; allows mon +lookup;
allows mon +get }

Map<Player, shared[Up] Counter> wins, losses;

void match(Player w, Player 1){ string playathon_check(Player p) {
wins[w]++; int played = wins[p] + losses[p];
losses[1]++; if (played > target) return “winner!”;
else abort;

Abort always allowed

must return string

Big idea: track provisional
observations via an
information-flow type system

restriction Up for Counter{
allows inc;
allows mon +get

restriction CheckOnly for Map{
allows mon +lookup;

}

Map<Player, shared[Up] Counter> wins, losses;

Inferred provisional label:

Provisional observation:
wins/losses may be
Inconsistent

provisional string playathon_check(Player p) {
int played = wins[p] + losses[p];
if (played > target) return “winner!”;
else return “no”;

Error: no visible actions
on provisional data

provisional string cr = playathon check(..);
print(cr);

restriction Up for Counter{
allows inc;
allows mon +get

restriction CheckOnly for Map{
allows mon +lookup;

}

Map<Player, shared[Up] Counter> wins, losses;

block until provisional

status resolves

provisional string playathon_check(Player p) {
int played = wins[p] + losses[p];
if (played > target) return “winner!”;
else return “no”;

}

provisional string cr = playathon check(..);
await cr;
print(cr);

interface Map<K,V>{ restriction CheckOnly for Map{
void add(K k, V v); allows mon +lookup;
void clear(E e); }

Maybe<V> lookup (K k);

await transaction new_player(Player p, shared[?] Map m) {
m.add(p, new Counter());

restriction Up for Counter{ restriction Down for Counter{
allows inc; allows dec;
allows mon +get allows mon -get

} }

shared[Read] Sum<shared[Up] Counter, shared[Down] Counter> c;

await transaction swap restriction(shared[?] Sum<shared[?] T, shared[?] T> c) {
if (staged.is left()) staged.right = staged.left;
else staged.left = staged.right;

By restricting objects to monotonic
Interfaces,

and tracking provisional actions via
information-flow,

Gambit provides strong consistency
atop weak replication.

A system, not just a language

—
-
—

Custom replication
protocols

Erlang/Java
implementations

<>

Convergent, gi Initial, buggy
transactional semantics Implementation

82

Gambit

* Step 1: program against objects, not read-write
registers

* Step 2: define stable observations in terms of
monotonicity

* Step 3: build a new programming language for
monotonicity

	Default Section
	Slide 1: Gambit:
	Slide 9: We’re building a sequentially-consistent programming language atop weakly-consistent replicated storage
	Slide 11: [Memory] Consistency in Distributed Storage Systems
	Slide 12: [Memory] Consistency in Distributed Storage Systems
	Slide 13: Linearizability: Strong Consistency
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Linearizability: Strong Consistency
	Slide 19
	Slide 20: Weak Consistency
	Slide 22: Consider: an online game service
	Slide 24: Gambit: Provably consistent programs atop weakly-consistent replication
	Slide 25: Step 1: change our assumptions about distributed interfaces
	Slide 27: Linearizability is needlessly strong
	Slide 28: We have the wrong object semantics
	Slide 29: Recording wins
	Slide 32: New assumptions
	Slide 33
	Slide 34: Step 2: Reliable observations for building sequentially-consistent applications with weak replication
	Slide 35: Reliable Observations
	Slide 36: Reliable Observations
	Slide 37: Programming monotonically
	Slide 39: Can we build something useful with monotonicity?
	Slide 40: Playathon!
	Slide 41: Mixing Consistency Across Transactions
	Slide 42: Playathon!

	smaller-derecho-example
	Slide 62: Step 3: expose monotonic observations via a programming language
	Slide 63: Our goals:
	Slide 64: Big idea: refine datatype interfaces via shared restrictions
	Slide 65
	Slide 68
	Slide 71
	Slide 72
	Slide 74: Big idea: track provisional observations via an information-flow type system
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 81: By restricting objects to monotonic interfaces, and tracking provisional actions via information-flow, Gambit provides strong consistency atop weak replication.
	Slide 82: A system, not just a language
	Slide 83: Gambit

