
Gambit:
Sequential Consistency 
without coordination in 
Distributed Programming 

Languages



We’re building a sequentially-
consistent programming 

language atop weakly-
consistent replicated storage



[Memory] Consistency in Distributed Storage Systems

X = 7?
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[Memory] Consistency in Distributed Storage Systems

X ← 7 X = 7? X = 7?

12



X = 7X ← 7

X ← 7

Linearizability: Strong Consistency

The isle of Paxos
X ← 7

write x

read x
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Hard to 
Implement 
Efficiently!









Linearizability: Strong Consistency

The isle of Paxos
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Hard to 
Impossible to

Implement 
Efficiently!



(Quite 
Literally)

The speed of light is slow
We have outgrown Paxos

Replicas will (temporarily) diverge
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X = 15

Weak Consistency

TARDiS
Database

X ← 7

TARDiS
Database

X ← 7

TARDiS
Database

X ← 7

TARDiS: A Branch-and-Merge Approach To Weak Consistency

This is hard to 
program against! 
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This is now 
standard!



Consider: an online game service

RECORD WINS AND 
LOSSES

PERFORM ONLINE 
MATCHMAKING

RUNS TOURNAMENTS

Correct under 
delayed 

replication
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surprisingly 
latency 

insensitive



Gambit:
Provably consistent 
programs atop 
weakly-consistent 
replication

In three easy steps!



Step 1: 
change our 
assumptions about 
distributed interfaces



Linearizability is needlessly strong
Processor architectures Language memory models

At most sequential consistency (weaker than linearizability)
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We have the wrong object semantics

Arbitrary read/write to:
• any location
• at any time

This is not how real systems work



We want 
increment, not 

read/write

concurrency on 
match calls!

Recording 
wins

transaction 
match(player w, player l){

  wins[w]++;

  losses[l]++;

}

wins: player ↦ int

losses: player ↦ int
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New assumptions

Provide sequential 
consistency

1

Program in terms of higher-
level replicated datatypes 
with restricted interfaces

2





Step 2:
Reliable observations for 
building sequentially-
consistent applications 
with weak replication

34



Reliable Observations

• Form guarantees about distributed state
• More restricted mutations allow more general observations

wins[c] ≥ 15

No concurrent mutations can violate 
this
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grow monotonically

Reliable Observations

More Observations More Mutations

Constants Multi-writer 
Registers

Single-writer
registers

increment-only
counters grow-only sets

Monotonic object: 
mutations are inflationary 
with respect to some 
order.

Threshold observation:
comparisons with 
constants are stable 
predicates
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Programming monotonically

• If all shared objects only 
grow…

• And we only observe 
thresholds…

• Or stable characteristics…
• Our program can be 

sequentially consistent 
under weak replication

Player has at 
least this many 

wins

Name is 
Boaty 

McBoatface

Get out 
of CAP!

37



Can we build something useful with 
monotonicity?

Yes! many common application 
behaviors are monotonic!
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Playathon!

transaction playathon_check(p) {

  int played = wins[p] + losses[p];

  if (played > target)  return “thon-win!”;

}

wins: player ↦ int losses: player ↦ int
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match

Mixing 
Consistency 
Across 
Transactions

Playathon_check
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Playathon!

transaction playathon_check(p) {

  int played = wins[p] + losses[p];

  if (played > target)  return “thon-win!”;

  else abort;

}

wins: player ↦ int losses: player ↦ int
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How do we expose this 
reasoning programmatically?



Step 3: expose 
monotonic 
observations via a 
programming language



Our goals:

Require only weak replication

Support imperative / object-
oriented programming

Share user-provided datatypes

Guarantee sequential 
consistency



Big idea: refine datatype 
interfaces via shared 

restrictions



interface Map<K,V>{
  void add(K k, V v);
  void clear(E e);
  Maybe<V> lookup (K k);

}

interface Counter{
void inc();
void dec();
int get();
void set(int i);

}

Map<Player,Counter> wins;
Map<Player,Counter> losses;



interface Map<K,V>{
  void add(K k, V v);
  void remove(K k);
  Maybe<V> lookup (K k);

}

interface Counter{
void inc();
void dec();
int get();
void set(int i);

}

restriction CheckOnly for Map{
  allows mon +lookup;
}

restriction RemoveOnly for Map{
  allows remove;
  allows mon -lookup;
}

Restricts get to positive, 
monotonic uses

restriction Up for Counter{
  allows inc;
  allows mon +get
}

restriction Down for Counter{
  allows mon -get
}

restriction Write for Counter{
  allows set;
}



restriction CheckOnly for Map{
  allows mon +lookup;
}

restriction Up for Counter{
  allows inc;
  allows mon +get
}

shared[Up] Counter c;
... 
c.inc(); 
if (c.get() > 13){ . . . }

else {…}

Statically Guaranteed 
monotonic!



restriction CheckOnly for Map{
  allows mon +lookup;
}

restriction Up for Counter{
  allows inc;
  allows mon +get
}

Map<Player, shared[Up] Counter> wins, losses;

void match(Player w, Player l){

  wins[w]++;

  losses[l]++;

}

string playathon_check(Player p) {

  int played = wins[p] + losses[p];

  if (played > target) return “winner!”;

  else abort;

} Abort always allowed

must return string



Big idea: track provisional 
observations via an 

information-flow type system



restriction CheckOnly for Map{
  allows mon +lookup;
}

restriction Up for Counter{
  allows inc;
  allows mon +get
}

Map<Player, shared[Up] Counter> wins, losses;

provisional string playathon_check(Player p) {

  int played = wins[p] + losses[p];

  if (played > target) return “winner!”;

  else return “no”;

}

Inferred provisional label:

Provisional observation:
wins/losses may be 

inconsistent

. . . 

provisional string cr = playathon_check(…);

print(cr);
Error: no visible actions 

on provisional data



restriction CheckOnly for Map{
  allows mon +lookup;
}

restriction Up for Counter{
  allows inc;
  allows mon +get
}

Map<Player, shared[Up] Counter> wins, losses;

provisional string playathon_check(Player p) {

  int played = wins[p] + losses[p];

  if (played > target) return “winner!”;

  else return “no”;

}

. . . 

provisional string cr = playathon_check(…);

await cr;

print(cr);

block until provisional 
status resolves



await transaction new_player(Player p, shared[?] Map m) {

  m.add(p, new Counter());

}

interface Map<K,V>{
  void add(K k, V v);
  void clear(E e);
  Maybe<V> lookup (K k);

}

restriction CheckOnly for Map{
  allows mon +lookup;
}



restriction Up for Counter{
  allows inc;
  allows mon +get
}

await transaction swap_restriction(shared[?] Sum<shared[?] T, shared[?] T> c) {

  if (staged.is_left()) staged.right = staged.left;

  else staged.left = staged.right;

}

shared[Read] Sum<shared[Up] Counter, shared[Down] Counter> c;

restriction Down for Counter{
  allows dec;
  allows mon -get
}



By restricting objects to monotonic 
interfaces, 
and tracking provisional actions via 
information-flow, 
Gambit provides strong consistency 
atop weak replication.
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A system, not just a language

Erlang/Java 
implementations

Custom replication 
protocols

Convergent, 
transactional semantics

Initial, buggy 
implementation
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Gambit

• Step 1: program against objects, not read-write 
registers

• Step 2: define stable observations in terms of 
monotonicity

• Step 3: build a new programming language for 
monotonicity
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