Gambit:

Sequential Consistency

without coordination in

Distributed Programming
Languages




We’re building a sequentially-
consistent programming
language atop weakly-
consistent replicated storage
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The speed of light is slow
We have outgrown Paxos \
Replicas will (temporarily) diverge P

X - :



This is hard to
program against!

This IS now
standard!

X POLICE "2 DX POLICE "2

FNQ.E R BO

o

TARDIS
Database

TARDIS TARDIS
Database Database

Weak Consistency
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Consider: an online game service

Correct under surprisingly
delayed latency

replication insensitive

RECORD WINS AND PERFORM ONLINE RUNS TOURNAMENTS
LOSSES MATCHMAKING

22



Gambit:

Provably consistent
programs atop
weakly-consistent
replication

In three easy steps!




Step 1:

change our
assumptions about
distributed interfaces




Linearizability is needlessly strong

ﬂ?rocessor architectures\ ﬂanguage memory models

e g

ih’

& /

At most sequential consistency (weaker than linearizability)




We have the wrong object semantics
v

w»

| -
Arbitrary read/write to: ‘ v
* any location ’
 atanytime |

This is not how real systems work #’



Recording
WIins

concurrency on

match calls!
transaction
match(player w, player 1){
wins[w]++;
losses[1l]++;

We want

increment,
read/write

not

wins: player - int

losses: player ~ int

29



New assumptions

Provide sequential Program in terms of higher-
consistency level replicated datatypes
with restricted interfaces




The CAP Theorem

A vailability

Tolerance to network
" artitions

PODC Keynote, July 19, 200C




Step 2:

Reliable observations for
building sequentially-
consistent applications
with weak replication




Reliable Observations

* Form guarantees about distributed state
* More restricted mutations allow more general observations

wins[c] 2 15

No concurrent mutations can violate

35



Reliable Observations

Monotonic object: Threshold observation:
mutations are inflationary comparisons with

with respect to some constants are stable
order. oredicates

grow monotonically

Single-writer  Multi-writer
registers Registers

iIncrement-only
counters

Constants grow-only sets

(

I

More Observations More Mutgtions



Programming monotonically

Name is

Boaty
* |If all shared objects only McBoatface

grow...

* And we only observe =
thresholds... least this many

wins

e Or stable characteristics...

* Our program can be
sequentially consistent

under weak replication Get out

of CAP!

L L
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Can we build something useful with
monotonicity?

Yes! many common application
behaviors are monotonic!



—
thlnS: player » int

Playathon!

)
— losses: player ~ int

transaction playathon check(p) {
int played = wins[p] + losses[p];

if (played > target) return “thon-win!”;

40



Mixing
Consistency
ACross

Transactions
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—
mes: player » int

Playathon!

)
— losses: player ~ int

transaction playathon check(p) {
int played = wins[p] + losses[p];

if (played > target) return “thon-win!”;

else abort;

How do we expose this
reasoning programmatically?

42



Step 3: expose
monotonic
observations via a

programming language




Require only weak replication

Support imperative / object-
oriented programming

Our goals: :
Share user-provided datatypes

Guarantee sequential
consistency



Big idea: refine datatype
Interfaces via shared
restrictions



interface Counter{ interface Map<K,V>{
void inc(); void add(K k, V v);
void dec(); void clear(E e);
int get(); Maybe<V> lookup (K k);
void set(int 1); }

}

Map<Player,Counter> wins;
Map<Player,Counter> losses;




interface Counter{
void inc();
void dec();
int get();
void set(int 1);

restriction Up for Counte
allows inc;
allows mon +ge

}

interface Map<K,V>{
void add(K k, V v);
void remove(K k);
Maybe<V> lookup (K k);

Restricts get to positive,
mohnotonic uses

restriction Down for Counter{
allows mon -get

}

restriction CheckOnly for Map{
allows mon +lookup;

}

restriction Write for Counter{
allows set;

}

restriction RemoveOnly for Map{
allows remove;
allows mon -lookup;




restriction Up for Counter{ restriction CheckOnly for Map{
allows inc; allows mon +lookup;

allows mon +get }

shared[Up] Counter c;

Statically Guaranteed

(.: :i.nc( ); monotonic!
if (c.get() > 13){ . . &}

ﬁelse {..}




restriction Up for Counter{ restriction CheckOnly for Map{
allows inc; allows mon +lookup;
allows mon +get }

Map<Player, shared[Up] Counter> wins, losses;

void match(Player w, Player 1){ string playathon_check(Player p) {
wins[w]++; int played = wins[p] + losses[p];
losses[1]++; if (played > target) return “winner!”;
else abort;

Abort always allowed

must return string




Big idea: track provisional
observations via an
information-flow type system



restriction Up for Counter{
allows inc;
allows mon +get

restriction CheckOnly for Map{
allows mon +lookup;

}

Map<Player, shared[Up] Counter> wins, losses;

Inferred provisional label:

Provisional observation:
wins/losses may be
Inconsistent

provisional string playathon_check(Player p) {
int played = wins[p] + losses[p];
if (played > target) return “winner!”;
else return “no”;

Error: no visible actions
on provisional data

provisional string cr = playathon check(..);
print(cr);




restriction Up for Counter{
allows inc;
allows mon +get

restriction CheckOnly for Map{
allows mon +lookup;

}

Map<Player, shared[Up] Counter> wins, losses;

block until provisional

status resolves

provisional string playathon_check(Player p) {
int played = wins[p] + losses[p];
if (played > target) return “winner!”;
else return “no”;

}

provisional string cr = playathon check(..);
await cr;
print(cr);




interface Map<K,V>{ restriction CheckOnly for Map{
void add(K k, V v); allows mon +lookup;
void clear(E e); }

Maybe<V> lookup (K k);

await transaction new_player(Player p, shared[?] Map m) {
m.add(p, new Counter());




restriction Up for Counter{ restriction Down for Counter{
allows inc; allows dec;
allows mon +get allows mon -get

} }

shared[Read] Sum<shared[Up] Counter, shared[Down] Counter> c;

await transaction swap restriction(shared[?] Sum<shared[?] T, shared[?] T> c) {
if (staged.is left()) staged.right = staged.left;
else staged.left = staged.right;




By restricting objects to monotonic
Interfaces,

and tracking provisional actions via
information-flow,

Gambit provides strong consistency
atop weak replication.



A system, not just a language

—
-
—

Custom replication
protocols

Erlang/Java
implementations

<>

Convergent, gi Initial, buggy
transactional semantics Implementation

82



Gambit

* Step 1: program against objects, not read-write
registers

* Step 2: define stable observations in terms of
monotonicity

* Step 3: build a new programming language for
monotonicity
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