
Gambit:
Sequential Consistency
without coordination in
Distributed Programming

Languages

We’re building a sequentially-
consistent programming

language atop weakly-
consistent replicated storage

[Memory] Consistency in Distributed Storage Systems

X = 7?

11

[Memory] Consistency in Distributed Storage Systems

X ← 7 X = 7? X = 7?

12

X = 7X ← 7

X ← 7

Linearizability: Strong Consistency

The isle of Paxos
X ← 7

write x

read x

13

Hard to
Implement
Efficiently!

Linearizability: Strong Consistency

The isle of Paxos

18

Hard to
Impossible to

Implement
Efficiently!

(Quite
Literally)

The speed of light is slow
We have outgrown Paxos

Replicas will (temporarily) diverge
19

X = 15

Weak Consistency

TARDiS
Database

X ← 7

TARDiS
Database

X ← 7

TARDiS
Database

X ← 7

TARDiS: A Branch-and-Merge Approach To Weak Consistency

This is hard to
program against!

20

This is now
standard!

Consider: an online game service

RECORD WINS AND
LOSSES

PERFORM ONLINE
MATCHMAKING

RUNS TOURNAMENTS

Correct under
delayed

replication

22

surprisingly
latency

insensitive

Gambit:
Provably consistent
programs atop
weakly-consistent
replication

In three easy steps!

Step 1:
change our
assumptions about
distributed interfaces

Linearizability is needlessly strong
Processor architectures Language memory models

At most sequential consistency (weaker than linearizability)

28

We have the wrong object semantics

Arbitrary read/write to:
• any location
• at any time

This is not how real systems work

We want
increment, not

read/write

concurrency on
match calls!

Recording
wins

transaction
match(player w, player l){

 wins[w]++;

 losses[l]++;

}

wins: player ↦ int

losses: player ↦ int

29

New assumptions

Provide sequential
consistency

1

Program in terms of higher-
level replicated datatypes
with restricted interfaces

2

Step 2:
Reliable observations for
building sequentially-
consistent applications
with weak replication

34

Reliable Observations

• Form guarantees about distributed state
• More restricted mutations allow more general observations

wins[c] ≥ 15

No concurrent mutations can violate
this

35

grow monotonically

Reliable Observations

More Observations More Mutations

Constants Multi-writer
Registers

Single-writer
registers

increment-only
counters grow-only sets

Monotonic object:
mutations are inflationary
with respect to some
order.

Threshold observation:
comparisons with
constants are stable
predicates

36

Programming monotonically

• If all shared objects only
grow…

• And we only observe
thresholds…

• Or stable characteristics…
• Our program can be

sequentially consistent
under weak replication

Player has at
least this many

wins

Name is
Boaty

McBoatface

Get out
of CAP!

37

Can we build something useful with
monotonicity?

Yes! many common application
behaviors are monotonic!

39

Playathon!

transaction playathon_check(p) {

 int played = wins[p] + losses[p];

 if (played > target) return “thon-win!”;

}

wins: player ↦ int losses: player ↦ int

40

match

Mixing
Consistency
Across
Transactions

Playathon_check

41

Playathon!

transaction playathon_check(p) {

 int played = wins[p] + losses[p];

 if (played > target) return “thon-win!”;

 else abort;

}

wins: player ↦ int losses: player ↦ int

42

How do we expose this
reasoning programmatically?

Step 3: expose
monotonic
observations via a
programming language

Our goals:

Require only weak replication

Support imperative / object-
oriented programming

Share user-provided datatypes

Guarantee sequential
consistency

Big idea: refine datatype
interfaces via shared

restrictions

interface Map<K,V>{
 void add(K k, V v);
 void clear(E e);
 Maybe<V> lookup (K k);

}

interface Counter{
void inc();
void dec();
int get();
void set(int i);

}

Map<Player,Counter> wins;
Map<Player,Counter> losses;

interface Map<K,V>{
 void add(K k, V v);
 void remove(K k);
 Maybe<V> lookup (K k);

}

interface Counter{
void inc();
void dec();
int get();
void set(int i);

}

restriction CheckOnly for Map{
 allows mon +lookup;
}

restriction RemoveOnly for Map{
 allows remove;
 allows mon -lookup;
}

Restricts get to positive,
monotonic uses

restriction Up for Counter{
 allows inc;
 allows mon +get
}

restriction Down for Counter{
 allows mon -get
}

restriction Write for Counter{
 allows set;
}

restriction CheckOnly for Map{
 allows mon +lookup;
}

restriction Up for Counter{
 allows inc;
 allows mon +get
}

shared[Up] Counter c;
...
c.inc();
if (c.get() > 13){ . . . }

else {…}

Statically Guaranteed
monotonic!

restriction CheckOnly for Map{
 allows mon +lookup;
}

restriction Up for Counter{
 allows inc;
 allows mon +get
}

Map<Player, shared[Up] Counter> wins, losses;

void match(Player w, Player l){

 wins[w]++;

 losses[l]++;

}

string playathon_check(Player p) {

 int played = wins[p] + losses[p];

 if (played > target) return “winner!”;

 else abort;

} Abort always allowed

must return string

Big idea: track provisional
observations via an

information-flow type system

restriction CheckOnly for Map{
 allows mon +lookup;
}

restriction Up for Counter{
 allows inc;
 allows mon +get
}

Map<Player, shared[Up] Counter> wins, losses;

provisional string playathon_check(Player p) {

 int played = wins[p] + losses[p];

 if (played > target) return “winner!”;

 else return “no”;

}

Inferred provisional label:

Provisional observation:
wins/losses may be

inconsistent

. . .

provisional string cr = playathon_check(…);

print(cr);
Error: no visible actions

on provisional data

restriction CheckOnly for Map{
 allows mon +lookup;
}

restriction Up for Counter{
 allows inc;
 allows mon +get
}

Map<Player, shared[Up] Counter> wins, losses;

provisional string playathon_check(Player p) {

 int played = wins[p] + losses[p];

 if (played > target) return “winner!”;

 else return “no”;

}

. . .

provisional string cr = playathon_check(…);

await cr;

print(cr);

block until provisional
status resolves

await transaction new_player(Player p, shared[?] Map m) {

 m.add(p, new Counter());

}

interface Map<K,V>{
 void add(K k, V v);
 void clear(E e);
 Maybe<V> lookup (K k);

}

restriction CheckOnly for Map{
 allows mon +lookup;
}

restriction Up for Counter{
 allows inc;
 allows mon +get
}

await transaction swap_restriction(shared[?] Sum<shared[?] T, shared[?] T> c) {

 if (staged.is_left()) staged.right = staged.left;

 else staged.left = staged.right;

}

shared[Read] Sum<shared[Up] Counter, shared[Down] Counter> c;

restriction Down for Counter{
 allows dec;
 allows mon -get
}

By restricting objects to monotonic
interfaces,
and tracking provisional actions via
information-flow,
Gambit provides strong consistency
atop weak replication.

81

A system, not just a language

Erlang/Java
implementations

Custom replication
protocols

Convergent,
transactional semantics

Initial, buggy
implementation

82

Gambit

• Step 1: program against objects, not read-write
registers

• Step 2: define stable observations in terms of
monotonicity

• Step 3: build a new programming language for
monotonicity

	Default Section
	Slide 1: Gambit:
	Slide 9: We’re building a sequentially-consistent programming language atop weakly-consistent replicated storage
	Slide 11: [Memory] Consistency in Distributed Storage Systems
	Slide 12: [Memory] Consistency in Distributed Storage Systems
	Slide 13: Linearizability: Strong Consistency
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Linearizability: Strong Consistency
	Slide 19
	Slide 20: Weak Consistency
	Slide 22: Consider: an online game service
	Slide 24: Gambit: Provably consistent programs atop weakly-consistent replication
	Slide 25: Step 1: change our assumptions about distributed interfaces
	Slide 27: Linearizability is needlessly strong
	Slide 28: We have the wrong object semantics
	Slide 29: Recording wins
	Slide 32: New assumptions
	Slide 33
	Slide 34: Step 2: Reliable observations for building sequentially-consistent applications with weak replication
	Slide 35: Reliable Observations
	Slide 36: Reliable Observations
	Slide 37: Programming monotonically
	Slide 39: Can we build something useful with monotonicity?
	Slide 40: Playathon!
	Slide 41: Mixing Consistency Across Transactions
	Slide 42: Playathon!

	smaller-derecho-example
	Slide 62: Step 3: expose monotonic observations via a programming language
	Slide 63: Our goals:
	Slide 64: Big idea: refine datatype interfaces via shared restrictions
	Slide 65
	Slide 68
	Slide 71
	Slide 72
	Slide 74: Big idea: track provisional observations via an information-flow type system
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 81: By restricting objects to monotonic interfaces, and tracking provisional actions via information-flow, Gambit provides strong consistency atop weak replication.
	Slide 82: A system, not just a language
	Slide 83: Gambit

