Verification under Weak Consistency and
Recent Decidability Results in Verification

Roland Meyer, TU Braunschwelig Joint work with the best PhD students in the world :)

IFIP WG 2.3, Athens, May 2025

Verification under Weak Consistency

Introductory example

Introductory example

Q: What are the possible outcomes
for the values of r1 and r2?

Introductory example

A: Check all possible interleavings!

Q: What are the possible outcomes
for the values of r1 and r2?

Introductory example

X =y =0 (a).(b).(c).(d)

(a) x = 1; (c) vy = 1;
(b) rl = y; (d) r2 = x (a).(c).(b).(d)
(a).(c).(d).(b)
(c).(d).(a).(b)
Q: What are the possible outcomes (c)-(a).(d).(b)

for the values of r1 and r2?

()-(a)-(b).(d)

Introductory example

X =y =20
1: (c)
V; (d)

(a)-(b).(c).(d)
(a)-(c).(b).(d)

(a)-(c).(d).(b)
(c)-(d).(a).(b)
()-(a).(d).(b)

()-(a)-(b).(d)

>

rM=0,r2

rnn=1,r2
rnn=1,r2
r=1,r2
rMn=1,r2

rn=1,r2

=
=
= 1
=0
= 1
=

Introductory example

X =y =20
1: (c)
V; (d)

(a)-(b).(c).(d)
(a)-(c).(b).(d)

(@).(c).(d).(b) *
(c).(d).(a).(b)
(c)-(a).(d).(b)
(c)-(a).(b).(d)

rM=0,r2

rnn=1,r2
rnn=1,r2
r=1,r2
rMn=1,r2
rn=1,r2

=
=
= 1
=0
= 1
=

Introductory example

(a).(b).(c).(d) rMN=0,r2=1

(a)-(c).(b).(d)

Mn=1,r2=1
(a).(c).(d).(b) » 1=1,r2=1
(©).(d).(a).(b) 1=1,r2=0
(c).(a).(d).(b)
(c).(a).(b).(d)

Mn=1,r2=1
rMn=1,r2=1

...practice says otherwise!

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0; (I2) v = 0;
Main Memory

Store Buffer Store Buffer

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

9(11)x=@; (IZ)y=@F6

Main Memory

Store Buffer Store Buffer

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0;

PO
Store Buffer

(a) X = 1; —

é(b) rl = vy;

X=1 =

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0;

PO
Store Buffer

(a) X = 1; —

é(b) rl = vy;

X=1 =

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0;

PO
Store Buffer

(a) x = 1; —
X=1 —_—

(b) r1 = 0:;

-

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0;

PO
Store Buffer

(a) x = 1; —
X=1 —_—

(b) r1 = 0:;

-

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0; (I2) v = 0;

P1
Store Buffer

—
\/ (d) r2) 0;

This behavior is not captured by an interleaving!

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0; (I2) v = 0;

V4

Understanding the program semantics requires

PO understanding the memory architecture!
(d) X =1 ’ —
(b) rl = 0;

This behavior is not captured by an interleaving!

Memory architectures (sketched)

Memory architectures (sketched)
Store buffer

Main Memory

Store Buffer Store Buffer

4/ 9 -

Memory architectures (sketched)
Store/Load buffer

Main Memory

Store/Load Buffer Store/Load Buffer

—_— —_— P— —

Memory architectures (sketched)

Store/Load buffer, instruction buffer

Main Memory

Instruction Buffer Instruction Buffer

Store/Load Buffer Store/Load Buffer

— — —_— P a— G e

Memory architectures (sketched)

Store/Load buffer, instruction buffer, decentralised memory

Memory Memory

Instruction Buffer Instruction Buffer
Store/Load Buffer Store/Load Buffer
—_— — —> 4— —

Memory architectures (sketched)

Store/Load buffer, instruction buffer, decentralised memory
.. and much more

Memory Memory

Instruction Buffer Instruction Buffer
Store/Load Buffer Store/Load Buffer
—_— — —> 4— —

Memory architectures (sketched)

Store/Load buffer, instruction buffer, decentralised memory
.. and much more

Instructlon W All these memory details affect the program semantics!

Memory architectures (sketched)

Store/Load buffer, instruction buffer, decentralised memory
.. and much more

All these memory details affect the program semantics!

Instructiori i Buffer

CP | | CPU
U G+ So we need to model them! —>

Program semantics

Capturing program semantics

Problems so far

Interleavings are insufficient to capture program behavior

Capturing program semantics

Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

Capturing program semantics

Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

» Requires all details of the memory architecture: too complex too quickly!

Capturing program semantics

Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

» Requires all details of the memory architecture: too complex too quickly!

Forget about architectural details!
Directly model observable behavior!

Capturing program semantics

Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

\ Requires all details of the memory architecture: too complex too quickly!

Forget about architectural details!
Directly model observable behavior!

Axiomatic program/memory semantics!

Axiomatic program semantics

Example

Axiomatic program semantics

Example

Axiomatic program semantics

Example

Axiomatic program semantics

Example
(I1) x = 0; (I2) y = 0;
PO o " P1
(a) X = 1; ‘ (C) y — 1'
(b) rt=90; (d) r2 = 0;

Axiomatic program semantics

Example
(I1) x = 0; (I2) y = 0;
PO / \ P1
(a)X=1; (C)y=1;

(b) r1 = 0; (d) r2 = 0:

Axiomatic program semantics

Example

Axiomatic program semantics

Example
(I1) x = 0; (I2) v = 0;
PO / \ P1
(a) x = 1; (c) v = 1;

Program executions described by labelled graphs

Axiomatic program semantics

Example
(I1) x = 0; (I2) v = 0;
PO / \ P1
(a) x = 1; (c) v = 1;

Program executions described by labelled graphs

No more interleavings!

Axiomatic program semantics

Example
(I1) x = 0; (I2) y = 0;
PO / P1
(a) x = 1; (c) v = 1;

Program executions described by labelled graphs
No more interleavings!

No details of the memory architecture!

ot
Consistency models with CAT*

S

Jade Alglave, Luc Maranget, Michael Tautschnig:
Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36(2): 7:1-7:74 (2014)

https://dblp.org/pid/89/6370.html
https://dblp.org/pid/49/4972.html
https://dblp.org/pid/18/1323.html
https://dblp.org/db/journals/toplas/toplas36.html#AlglaveMT14

ot
Consistency models with CAT*

" | | K Industry i
Jade Alglave, Luc Maifanget., Mzch.ael Taut.schmg: N Standard >
Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36(2): 7:1-7:74 (2014) /

N

https://dblp.org/pid/89/6370.html
https://dblp.org/pid/49/4972.html
https://dblp.org/pid/18/1323.html
https://dblp.org/db/journals/toplas/toplas36.html#AlglaveMT14

Memory consistency models

A memory consistency model answers the following question:

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(x,1)

(]

R(x)=1

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(x,1)

(]

R(x)=1

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(Xrl) R(X)=1

(] C

R(x)=1 W(x,1)

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(Xrl) R(X)=1

(| (] &

R(x)=1 W(x,1)

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(x,1) R(x)=1 W(x,1)e—W(x,2)

(o (1o |

R(x)=1 W(x,1) R(x)=2

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(x,1) R(x)=1 (X, 1 «—W(x,2)

(lo (1o | /o

R(x)=1 W(x,1)

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(x,1) R(x)=1 (X, 1 «—W(x,2)
(o (le | /e
R(x)=1 W(x,1)

2l

The CAT language is used to formulate memory consistency models

Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(x,1) R(x)=1 (X, 1 «—W(x,2)
(o (le | /e
R(x)=1 W(x,1)

2l

The CAT language is used to formulate memory consistency models

Restrict the shape (events & relations) of executions

Memory consistency models
The CAT language

CAT uses existing (base) relations

Memory consistency models
The CAT language

CAT uses existing (base) relations

Base relations

— Program order
—p Coherence order

-—pPp Read-from relation

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

Base relations

— Program order
—p Coherence order

-—pPp Read-from relation

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

Base relations Derived relations

— Program order
-—P Coherence order —P Happens-before

-—pPp Read-from relation

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

Base relations Derived relations

— Program order
-—P Coherence order —P Happens-before

-—pPp Read-from relation

Relation algebra: U, M, \, - o ! L

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

CAT puts constraints on relations, happens-before has to be acyclic

Base relations Derived relations

— Program order
-—P Coherence order —) Happens-before

-—pPp Read-from relation

Relation algebra: U, M, \, - -_1, o', ...

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

CAT puts constraints on relations, happens-before has to be acyclic

Base relations Derived relations Constraints

— Program order

-—P Coherence order —) Happens-before acyclic (Happens-before)

-—pPp Read-from relation

Relation algebra: U, M, \, - o ! L

Memory consistency models
The CAT language (example)

Base relations Derived relations Constraints

— Program order

—P Coherence order —p Happens-before acyclic (Happens-before)

- Read-from relation

R(x)=1

..

W(x,1)

Memory consistency models
The CAT language (example)

Base relations Derived relations Constraints

— Program order

—P Coherence order —p Happens-before acyclic (Happens-before)

- Read-from relation

R(X)=1 hb:pOU rf R(X)=1

.. (|

W(x,1) W(x,1)

Memory consistency models
The CAT language (example)

Base relations Derived relations Constraints

— Program order —P Conflict relation
—P Coherence order —p Happens-before acyclic (Happens-before)

- Read-from relation

R(x)=1 hb=po U rf R(x)=1 acyclic (hb)
W(x,1) W(x,1)

Inconsistent

Memory consistency models
The CAT language (example)

Base relations Derived relations Constraints

— Program order
—P Coherence order —p Happens-before acyclic (Happens-before)

- Read-from relation

Memory consistency models
The CAT language (example)

Base relations Derived relations Constraints

— Program order
—p Coherence order

-—P Happens-before acyclic (Happens-before)

- Read-from relation

W(x,1)e—W(x,2) =Mhco w(x,1)e—W(x,2)

L L

R(x)=2 R(x)=2

Memory consistency models
The CAT language (example)

Base relations Derived relations Constraints

— Program order —P Conflict relation
—P Coherence order —p Happens-before acyclic (Happens-before)

- Read-from relation

W(x,1)e—W(x,2) r=rmhco wix,1)e—W(x,2) acyclic (pou fr)

| |/ X

R(x)=2 R(x)=2 Inconsistent

Memory consistency models
Outlook

Memory consistency models
Outlook

Beyond hardware memory architectures!

Memory consistency models
Outlook

Beyond hardware memory architectures!

(A) Language-level memory models (C11, LKMM, Java, ...)

Memory consistency models
Outlook

Beyond hardware memory architectures!

(A) Language-level memory models (C11, LKMM, Java, ...)

Compiler optimisations + compiler mappings

Memory consistency models
Outlook

Beyond hardware memory architectures!

(A) Language-level memory models (C11, LKMM, Java, ...)
Compiler optimisations + compiler mappings

Library specifications: RCU, pthread, safe memory reclamation, ...

Memory consistency models
Outlook

Beyond hardware memory architectures!

(A) Language-level memory models (C11, LKMM, Java, ...)
Compiler optimisations + compiler mappings
Library specifications: RCU, pthread, safe memory reclamation, ...

(B) Distributed systems (~ communication protocols)

Memory consistency models
Outlook

Beyond hardware memory architectures!

(A) Language-level memory models (C11, LKMM, Java, ...)
Compiler optimisations + compiler mappings
Library specifications: RCU, pthread, safe memory reclamation, ...
(B) Distributed systems (~ communication protocols)

(C) Databases (~ database isolation levels)

Dartagnan

Dartagnan

Model checking real code

Dartagnan

Dartagnan

Model checking real code

Program
—_—

—_—)

Specification
—_—)

Dartagnan

A Configuration
—_—

Dartagnan

Model checking real code
C/Linux code (LLVM), Litmus code (x86, RISCV, PPC, ARMvS8, Nvidia PTX)

Can automatically compile C/Linux code to hardware!

Program
2

—_—p

Specification
—_—)

Dartagnan

A Configuration
—_—

Dartagnan

Model checking real code
C/Linux code (LLVM), Litmus code (x86, RISCV, PPC, ARMvS8, Nvidia PTX)

Can automatically compile C/Linux code to hardware!

Program
2

—_—p

Specification
—_—)

user assertions
liveness
data races

Dartagnan

A Configuration
—_—

Dartagnan

Model checking real code

i e vt

Program
—_—)

—_—

. Specification

Dartagnan

A Conflguratlon

r
_

Dartagnan

Model checking real code

i e vt

Program A
—_—— —_— V

—_—

jl 't A
Dartagnan —_—
. Specification
A
A Conflguratlon —_— P

(Bounded safety)

r
_

Dartagnan

Internals

Dartagnan

Program
—_—

Program

transformations
CAT *
P s
SMT solvin
A &.l 9

Specification

e
Static analyses »

A Configuration

—_—

(Bounded safety)

Static analyses - I Q
A Configuration 2

—> [|

(Bounded safety)

Dartagnan

Internals

Dartagnan

Program
A

Program

transformations
s

Cl SMT solving

Static analyses

Natalia Gavrilenko, Herndn Ponce de Leon, Florian Furbach,

N

Specification
—

Configuration
—_—

(Bounded safety)

Keijo Heljanko, Roland Mever: BMC for Weak Memory Models:
Relation Analysis for Compact SMT Encodings @ CAVI9

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/205/5236.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html

Dartagnan

Thomas Haas, Roland Meyer, Herndn Ponce de Leon: \(
Internals CAAT: consistency as a theory @ OOPSLA22 @

Dartagnan

Program
A

—_—)

Specification
—

Program
transformations

Cl SMT solving

Static analyses

Natalia Gavrilenko, Herndn Ponce de Leon, Florian Furbach,

A Configuration
—_—

(Bounded safety)

Keijo Heljanko, Roland Mever: BMC for Weak Memory Models:
Relation Analysis for Compact SMT Encodings @ CAVI9

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/205/5236.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html

E ding CAT into logical theon
Thomas Haas, Roland Meyer, Herndn Ponce de Leon: ""
CAAT: consistency as a theory @ OOPSLA22 @

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html

CAT in logical theories

CAT in logical theories

» CAT has simple operations over relations: ;,U, N, \, o1

— Easily encodable into plain SAT (over finite domain)

CAT in logical theories

» CAT has simple operations over relations: ;,U, N, \, o1

— Easily encodable into plain SAT (over finite domain)

 CAT has axioms on relations: empty, irreflexive, acyclic

— Emptiness and irreflexivity encodable into plain SAT;
Acyclicity encodable into integer difference logic (SMT)

CAT in logical theories

= & |

Problem: CAT allows for (non-linear) recursive definitions with
(stratified) least fixed point semantics!

CAT in logical theories

Problem: CAT allows for (non-linear) recursive definitions with
(stratified) least fixed point semantics!

Existing theories have a hard time capturing least fixed point semantics!

\TINYAQQ ON IVraATIAQAVIN/IT\7 NN A TNTA NNIATN AV G

Dartagnan

Memory-model-parametric BMC

Eager encoding using standard theories

Program
EE— SMT solver

CAT
-H —_—

Dartagnan

Dartagnan + CAAT

Memory-model-parametric BMC with CAAT

Base relations only

CAT as theory
Program
EE— SMT solver

Dartagnan
5 | CAT
\/ UNSAT SAT

_
J SAT

o

CAT as logical theory SIS ITH) | agence

let hb = po-tso | (rf & ext) | fr | co

acyclic hb
// more relations & axioms

Derived relations Axioms

‘Base relations
r \\
fr * acyclic
o
ext-
po-

’rf‘l/ /

— — rfe

— —

CAAT: Consistency as a Theory

lll

Hidden inside J« e

Derived relations Axioms

acyclic

CAAT: Consistency as a Theory

lll

Hidden inside J« e

~Derived ralatinne ‘Axioms

See CAT as logical theory over the base relations!

—

—P>

acyclic

How does it work?

AR

Theory solving for SC

let fr = rf*-1;co
let hb = po | rf | fr | co
acyclic hb

D

AR

Theory solving for SC

let fr = rf*-1:co
let hb = po | rf | fr | co
acyclic hb

D

AR

Theory solving for SC

let fr = rf©™-1;co
let hb = po | rf | fr | co
acyclic hb

1. Derive (Bottom-Up)

_ Derived relations

o ——

AR

Theory solving for SC

let fr = rf©™-1;co
let hb = po | rf | fr | co
acyclic hb

1. Derive (Bottom-Up)

_ Derived relations Axioms

2. Check

acyclic

o -
\

AR

Theory solving for SC

let fr = rf©™-1;co
let hb = po | rf | fr | co
acyclic hb

1. Derive (Bottom-Up)

_ Derived relations Axioms

2. Check

< —

— acyclic

<

3. Explain (Top-Down)

AR

Theory solving for SC

let fr = rf©™-1;co
let hb = po | rf | fr | co
acyclic hb

1. Derive (Bottom-Up)

_ Derived relations

2. Check

<
\

<

3. Explain (Top-Down)

AR

Theory solving for SC

let fr = rf©™-1;co
let hb = po | rf | fr | co
acyclic hb

1. Derive (Bottom-Up)

D

2. Check

A —————————————————————
3. Explain (Top-Down)

AR

Theory solving for SC

let fr = rf©™-1;co
let hb = po | rf | fr | co
acyclic hb

1. Derive (Bottom-Up)

2. Check

D

A —————————————————————
3. Explain (Top-Down)

m Program order: ——»

tet Tr ri=-1;co Coherence: —>
let hb po | rf | fr | co e 3

acyclic hb

l:store(&f, 1); 4:store(&qg, 1);

1 |

2:store(&t, 2); 5:store(&t, 1);

while(while(
3:load(&g) == 6:load(&F) == 1

o |

) 1} 7:load(&t) == 1) {}

0:init (&g, 0)

‘ﬂ Program order: =

let Tr = ri”-1;co Coherence: —>
let hb =po | rf | fr | co :

acyclic hb

l:store(&f, 1); 4:store(&qg, 1);

1 _—

2:store(&t, 2); 5:store(&t, 1);

|

0:init (&g, 0)

while(while(
3:load(&g) == 6:load(&F) == 1
&& && l
load(&t) == 2) {} 7:1load(&t) == 1) {}
" po(12) A po(2.3) A po(4.5) A po(5.6) A po(6.7)
P = A 7£(0,3) A 7(1,6) A 1f(2,7)
: A co(0,4) A co(5,2) ,:

ll
*

Program order: —p

1. Derive (Bottom-Up)

Coherence: =—p

*
--

l:store(&f, 1); 4:store(&qg, 1);

1]

2:store(&t, 2); 5:store(&t, 1);

|

0:init (&g, 0)

while(while(
3:load(&g) == 6:load(&F) == 1
&& && l'
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

Program order: —p

1. Derive (Bottom-Up)

Coherence: =—p

*
--
..

ll

l:store(&f, 1); 4:store(&qg, 1);

1]

2:store(&t, 2); 5:store(&t, 1);

|

0:init (&g, 0)

while(while(
3:load(&g) == 6:load(&F) == 1
&& && l'
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

Program order: —p

1. Derive (Bottom-Up)

Coherence: =—p

*
--
..

ll

1l:store(&f, 1); 4:store(&qg, 1);

2:store(&t, 2); — v 5:store(&t, 1);
0:init(&g, 0) l
\ while(while(

3:load(&g) == 6:load(&F) == 1
&& && l'
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

Program order: —p

2. Check

Coherence: —p

*
--
..

ll

l:store(&f, 1); 4:store(&qg, 1);

1 |

2:store(&t, 2); = v 5:store(&t, 1);
0:init(&g, 0) l
\ while(while(

3:load(&g) == 6:load(&F) == 1
&& && l'
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

Program order: —p

2. Check :
......... Coherence: ——>
Happens-before: ——»
l:store(&f, 1); 4:store(&qg, 1);
2:store(&t, 2); 5:store(&t, 1);
0:init(&g, 0) l
while(while(
3:load(&g) == 6:load(&f) == 1
&& &&
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

Program order: —» :
3. Explain (Top-Down) =

Coherence: =—p

*
--
..

ll

1l:store(&f, 1); 4:store(&qg, 1);
2:store(&t, 2); 5:store(&t, 1);
0:init (&g, 0) l
while(while(
3:load(&g) == 6:load(&F) == 1
&& &&
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

Program order: —p

3. Explain (Top-Down)

Coherence: —p

*
--
..

ll

l:store(&f, 1); 4:store(&qg, 1);

|

2:store(&t, 2); 7 —7/7/—m—m——————<= _ ___ S5:store(&t, 1):

0:init(&g, 0) l
while(while(
3:load(&g) == 6:load(&F) == 1
&& &&
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

Program order: —p

3. Explain (Top-Down)

Coherence: =—p

*
--

l:store(&f, 1); 4:store(&qg, 1);

]

5:store(&t, 1);

2:store(&t, 2);

0:init (&g, 0)

while(while(
3:load(&g) == 6:load(&F) == 1
&& &&
load(&t) == 2) {} 7:load(&t) == 1) {}

let fr = rf*-1;co
let hb = po | rf | fr | co

acyclic hb

ll
*

: Program order: —

3. Explain (Top-Down)

Coherence: —p

*
--

1l:store(&f, 1); 4:store(&qg, 1);

2:store(&t, 2); 5:store(&t, 1);
0:init(&g, 0)

while(while(
3:load(&g) == 6:load(&F) == 1
&& &&
load(&t) == 2) {} 7:load(&t) == 1) {}
CUTIITTY T
I A rf(0,3) C A 71(0,3) A 7f(1,6) A 1f(2,7) =@
A c0(0.4) A co(5.2) :‘ A c0(0.4) A co(5.2)

ll
*

] : Program order: —
3. Explain (Top-Down) . Read-from: —> |

Coherence: =—p

*
--

l:store(&f, 1); / 4:store(&g, 1);
2:store(&t, 2); 5:store(&t, 1);
P:init(&a. @ —

Explanation: T ¢~ F =(po(2,3) A po(4,5) A rf(0,3) A co(0,4) A co(5,2))

&& &&

load(&t) == 2) {} 7:1load(&t) == 1) {}
:' po(2,3) Apo(4,5) | :' po(1,2) A po(2,3) A po(4,5) A po(5,6) A po(6,7) ,
L ATf03) , C A Tf(0.3) A Tf(1,6) A rf(2,7) =
:‘ A co(0,4) A co(5,2) ! :‘ A co(0,4) A co(5,2) '.

A Theory Solver for Consistency

a7
JH Theory Solver

conj. ¢

Derive

sat

Check

l iInconsistent

explanation

Explain

A Decision Procedure for Consistency

--
® b,

o* .,

. S

Lazy SMT

LG/;"(Theory Solver

conj. ¢
Derlve

Check
SAT Solver

|nconS|stent

(un)sat
— explanation
E Explain

0. ‘0
.....
lll

A Decision Procedure for Consistency

--
* n,

o* .,

. S

Lazy SMT

model of ¥ Jﬁ Theory Solver

conj
Derlve

Check
SAT Solver

|nconS|stent

(un)sat
— explanation
E Explain

* R
.....

A Decision Procedure for Consistency

--
* n,

o* .,

. S

Lazy SMT

model of ¥ Jﬁﬂ(Theory Solver

conj
Derlve

Check
SAT Solver

|ncon5|stent

(un)sat
— explanation
E Explain

* R
.....

A Decision Procedure for Consistency

--
* n,

o* .,

. S

Lazy SMT
model of ¥/ to/;"(Theory Solver
X
conj. ¢
Derive
v
.
Add explanation, i
enerate new model
: oAl Solver
_ iinconsistent
<M§_ explanation

Explain

* R
.....

Evaluation

NoO recursion

Evaluation: simple CATs ym¢ —

ARMS

TS0

Time (ms)
Time (ms)

No recursion

Evaluation: simple CATs ¢ —

| 1

e e

Simple CATs: CAAT is barely faster than standard theories

Linear recursion

Evaluation: complex CATs et —

RC11

IMM

Time (ms)
Time (ms)

Linear recursion

Evaluation: complex CATSs st —

Complex CATs: CAAT is 2-20x faster than standard theories

Non-linear recursion

Evaluation: very complex CATs ¢ —

Power

Time (ms)

Non-linear recursion

—

Evaluation: very complex CATs ¢ -

-l:‘ — — — e — PRNSN S—— /&‘

Very complex CATs: CAAT is up to 100x faster than standard theories

Conclusion

» We see consistency models as a family of theories _gf ﬁ «ﬂ M

» Consistency theories handle least fixed points, unlike existing theories
 We give a general theory solver for consistency theories

* Using CAAT in BMC gives substantial performance improvement

Ongoing Work

* Online integration with the SMT solver

* |ncrementality is a problem — the partial models are often largely different,
because other theories make the solver backtrack!

 Use matching instead!

Cyclic Proofs for
Axiomatic Memory Models

ongoing work with Jan Grinke and Thomas Haas

Memory Models have Bugs

119

Memory Models have Bugs

Java MM [ULS 1996]
> too weak to build new synchronization primitives [Pugh]

> too strong for common compiler optimizations (i.e. CSE) [Pugh]

The Java Memory Model

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park
College Park, MD

Sarita V. Adve
Department of Computer Science

University of lllinois at Urbana-Champaign

Urbana-Champaign, IL

Fixing the Java Memory Model

William Pugh
Dept. of Computer Science
Univ. of Maryland, College Park
pugh@cs.umd.edu

Abstract

The Java memory model described in Chapter 17 of the
Java Language Specification gives constraints on how
threads interact through memory. The Java memory
model is hard to interpret and poorly understood; it
imposes constraints that prohibit common compiler op-
timizations and are expensive to implement on existing
hardware. At least one shipping optimizing Java com-
piler violates the constraints of the existing Java mem-
ory model. These issues are particularly important for
high-performance Java applications, since they are more
likely to use and need aggressive optimizing compilers
awdl parallel processors.

In addition, programming idioms used by some pro-
grammers and used within Sun’s Java Development Kit
is not guaranteed to be valid according the existing Java
memory model.

This paper reviews these issues and suggests replace-
ment memory models for Java.

1 Introduction

The Java memory model, as described in chapter 17 of
the Java Language Specification [GJS96], is very hard

it does. However, I don’t believe it would be profitable
to spend much time debating whether it does have these
features. I am convinced that the existing style of the
specification will never be clear, and that attempts to
patch the existing specification by adding new rules will
make even harder to understand. If we decide to change
the Java memory model, a completely new description
of the memory model should be devised.

In addition to the problem that the memory model
is very hard to understand, it has two basic problems:
it is too weak and it is too strong. It is too strong
in that it prohibits many compiler optimizations and
requires many memory barriers on architectures such
Sun’s Relaxed Memory Order (RMO). It is too weak in
that much of the code that has been written for Java,
including code in Sun’s JDK, is not guaranteed to be
valid.

2 The Java Memory Model

In this section, I try to interpret JMM, the existing Java
Memory Model, as defined in Chapter 17 of the Java
Language Specification [GJS96]. The same definition
also appears in Chapter 8 of the Java Virtual Machine
Specification [LY96].

119

Memory Models have Bugs

e Java MM [ULS 1996]
> too weak to build new synchronization primitives [Pugh]

> too strong for common compiler optimizations (i.e. CSE) [Pugh]

The Java Memory Model

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park
College Park, MD

Sarita V. Adve

Department of Computer Science
University of lllinois at Urbana-Champaign

Urbana-Champaign, IL

Fixing the Java Memory Model

William Pugh

Dept. of Computer Science
Univ. of Maryland, College Park

pugh@cs.umd.edu

Abstract it does. However, I don’t believe it would be profitable
to spend much time debating whether it does have these

The Tava memarv madel deceribhed in Chanter 17 af the franbiimnn T oo cccdinnd bhink dln ccdinbion abeda AF 4l
>

. l

Common Compiler Optimisations are Invalid .

1

in the C11 Memory Model and what we can do about it

. C++11 MM

> common compiler optimizations are invalid [Vafeiadis et. alf

> allows strange behavior (i.e. OOTA) [Vafeiadis et. al]

Al
Sh

» SC fences are too weak [Sarkar et. alf

W€
exi

ha
loz

ye

> unsound compilation schemes to POWER [Lahav et. al] 53

the

scl
clu
op
sol
ste
co
fid
sic
the
Ca
Ar
cu
an

Ge

Ke

Viktor Vafeiadis

Thibaut Balabonski

MPI-SWS INRIA

Soham Chakraborty

MPL-SWS i
Aba

Taming Release-Acquire Consistency

Ori Lahav Nick Giannarakis

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS), Germany
{orilahav,nickgian,viktor }@mpi-sws.org

Synchronising C/C++ and POWER

1

Susmit Sarkar! Kayvan Memarian

Luc Maranget?

LUniversity of Cambridge, {first.last}@cl.cam.ac.uk
2INRIA, luc.maranget@inria.fr

Scott Owens! ~ Mark Batty!
Jade Alglave®

3University of Oxford, jade.alglave@comlab.ox.ac.uk
4IBM Austin, striker@us.ibm.com

Peter Sewell
Derek Williams*

Repairing Sequential Consistency in C/C++11

Ori Lahav

MPI-SWS, Germany *
orilahav@mpi-sws.org

Chung-Kil Hur
Seoul National University, Korea
gil.hur@sf.snu.ac.kr

Abstract

The C/C++11 memory model defines the semantics of concur-
rent memory accesses in C/C++, and in particular supports
racy “atomic” accesses at a range of different consistency
levels, from very weak consistency (“relaxed”) to strong, se-
quential consistency (“SC”). Unfortunately, as we observe in
this paper, the semantics of SC atomic accesses in C/C++11,
as well as in all proposed strengthenings of the semantics, is
flawed, in that (contrary to previously published results) both
suggested compilation schemes to the Power architecture are
unsound. We propose a model, called RC11 (for Repaired
C11), with a better semantics for SC accesses that restores the
soundness of the compilation schemes to Power, maintains
the DRF-SC guarantee, and provides stronger, more useful,
guarantees to SC fences. In addition, we formally prove, for
the first time, the correctness of the proposed stronger compi-

lation cchemec to Pawer that nrecerve laad-_to-ctore arderino

Viktor Vafeiadis

MPI-SWS, Germany *
viktor@mpi-sws.org

Jeehoon Kang

Seoul National University, Korea
jeehoon.kang@sf.snu.ac.kr

Derek Dreyer

MPI-SWS, Germany *
dreyer@mpi-sws.org

there are two general types: non-atomic and atomic. Non-
atomic accesses are intended for normal data: races on such
accesses are considered as programming errors and lead to
undefined behavior, thus ensuring that they can be compiled
to plain machine loads and stores and that it is sound to apply
standard sequential optimizations on non-atomic accesses.
In contrast, atomic accesses are specifically intended for
communication between threads: thus, races on atomics are
permitted, but at the cost of introducing hardware fence
instructions during compilation and imposing restrictions
on how such accesses may be merged or reordered.

The degree to which an atomic access may be reordered
with other operations—and more generally, the implemen-
tation cost of an atomic access—depends on its consistency
level, concerning which C11 offers programmers several op-
tions according to their needs. Strongest and most expensive
are sequentially consistent (SC) accesses, whose primary

Memory Models have Bugs

e Java MM [ULS 1996]
> too weak to build new synchronization primitives [Pugh]

> too strong for common compiler optimizations (i.e. CSE) [Pugh]

The Java Memory Model

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park
College Park, MD

Sarita V. Adve

Department of Computer Science
University of lllinois at Urbana-Champaign

Urbana-Champaign, IL

Fixing the Java Memory Model

William Pugh

Dept. of Computer Science
Univ. of Maryland, College Park

pugh@cs.umd.edu

Abstract it does. However, I don’t believe it would be profitable
to spend much time debating whether it does have these

The Tava memarv madel deceribhed in Chanter 17 af the franbiimnn T oo cccdinnd bhink dln ccdinbion abeda AF 4l
>

. l

Common Compiler Optimisations are Invalid .

1

in the C11 Memory Model and what we can do about it

. C++11 MM

> common compiler optimizations are invalid [Vafeiadis et. alf

> allows strange behavior (i.e. OOTA) [Vafeiadis et. al]

Al
Sh

» SC fences are too weak [Sarkar et. alf

W€
exi

ha
loz

ye

> unsound compilation schemes to POWER [Lahav et. al] 53

the

scl
clu
op
sol

= Need for automatic Memory Model verification!

sic
the
Ca
Ar
cu
an

Ge

Ke

Viktor Vafeiadis

Thibaut Balabonski

MPI-SWS INRIA

Soham Chakraborty

MPL-SWS i
Aba

Taming Release-Acquire Consistency

Ori Lahav Nick Giannarakis

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS), Germany
{orilahav,nickgian,viktor }@mpi-sws.org

Synchronising C/C++ and POWER

1

Susmit Sarkar’! Kayvan Memarian

Luc Maranget?

LUniversity of Cambridge, {first.last}@cl.cam.ac.uk
2INRIA, luc.maranget@inria.fr

Scott Owens! ~ Mark Batty!
Jade Alglave®

3University of Oxford, jade.alglave@comlab.ox.ac.uk
“IBM Austin, striker@us.ibm.com

Peter Sewell
Derek Williams*

Repairing Sequential Consistency in C/C++11

Ori Lahav

MPI-SWS, Germany *
orilahav@mpi-sws.org

Chung-Kil Hur
Seoul National University, Korea
gil.hur@sf.snu.ac.kr

Abstract

The C/C++11 memory model defines the semantics of concur-
rent memory accesses in C/C++, and in particular supports
racy “atomic” accesses at a range of different consistency
levels, from very weak consistency (“relaxed”) to strong, se-
quential consistency (“SC”). Unfortunately, as we observe in
this paper, the semantics of SC atomic accesses in C/C++11,
as well as in all proposed strengthenings of the semantics, is
flawed, in that (contrary to previously published results) both
suggested compilation schemes to the Power architecture are
unsound. We propose a model, called RC11 (for Repaired
C11), with a better semantics for SC accesses that restores the
soundness of the compilation schemes to Power, maintains
the DRF-SC guarantee, and provides stronger, more useful,
guarantees to SC fences. In addition, we formally prove, for
the first time, the correctness of the proposed stronger compi-

lation cchemec to Pawer that nrecerve laad-_to-ctore arderino

Viktor Vafeiadis

MPI-SWS, Germany *
viktor@mpi-sws.org

Jeehoon Kang

Seoul National University, Korea
jeehoon.kang@sf.snu.ac.kr

Derek Dreyer

MPI-SWS, Germany *
dreyer@mpi-sws.org

there are two general types: non-atomic and atomic. Non-
atomic accesses are intended for normal data: races on such
accesses are considered as programming errors and lead to
undefined behavior, thus ensuring that they can be compiled
to plain machine loads and stores and that it is sound to apply
standard sequential optimizations on non-atomic accesses.
In contrast, atomic accesses are specifically intended for
communication between threads: thus, races on atomics are
permitted, but at the cost of introducing hardware fence
instructions during compilation and imposing restrictions
on how such accesses may be merged or reordered.

The degree to which an atomic access may be reordered
with other operations—and more generally, the implemen-
tation cost of an atomic access—depends on its consistency
level, concerning which C11 offers programmers several op-
tions according to their needs. Strongest and most expensive
are sequentially consistent (SC) accesses, whose primary

Dartagnan
Checking the Linux Kernel

Dartagnan
Checking the Linux Kernel

Dartagnan found gspinlock to be broken (according to LKMM):
it was racy, failed to provide mutual exclusion, and could deadlock

Dartagnan
Checking the Linux Kernel

Dartagnan found gspinlock to be broken (according to LKMM):
it was racy, failed to provide mutual exclusion, and could deadlock

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Dartagnan
Checking the Linux Kernel

Dartagnan found gspinlock to be broken (according to LKMM):
it was racy, failed to provide mutual exclusion, and could deadlock

However: gspinlock runs fine on hardware (TSO, Power, ARMvS8, RISCV)

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Dartagnan
Checking the Linux Kernel

Dartagnan found gspinlock to be broken (according to LKMM):
it was racy, failed to provide mutual exclusion, and could deadlock

However: gspinlock runs fine on hardware (TSO, Power, ARMvS8, RISCV)

st O 7
AN

Anarchic semantics

LKMM semantics

0.8

Hardware semantics

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Dartagnan
Checking the Linux Kernel

Dartagnan found gspinlock to be broken (according to LKMM):
it was racy, failed to provide mutual exclusion, and could deadlock

However: gspinlock runs fine on hardware (TSO, Power, ARMvS8, RISCV)

st O 7
AN

Anarchic semantics

LKMM semantics

!

Buggy behavior

Hardware semantics

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Dartagnan
Checking the Linux Kernel

Dartagnan found gspinlock to be broken (according to LKMM):
it was racy, failed to provide mutual exclusion, and could deadlock

However: gspinlock runs fine on hardware (TSO, Power, ARMvS8, RISCV)

st O 7
AN

Anarchic semantics

LKMM semantics

Wl

Buggy behavior

Hardware semantics

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Dartagnan
Checking the Linux Kernel

Dartagnan found gspinlock to be broken (according to LKMM):
it was racy, failed to provide mutual exclusion, and could deadlock

However: gspinlock runs fine on hardware (TSO, Power, ARMvS8, RISCV)

Anarchic semantics

LKMM semantics

Wl

Buggy behavior

Hardware semantics

N

Corrected LKMM semantics

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Model Checking Memory Models

& _ R
Given: Memory Models M, M,

Question: Is M, weaker than M,?

_ J

Model Checking Memory Models

& _ B
Given: Memory Models M, M,

KQuestion: Is M, weaker than M,?

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbge = acyclic hbygy)

Model Checking Memory Models

& _ B
Given: Memory Models M, M,

KQuestion: Is M, weaker than M,?

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbge = acyclic hbygy)
hb7 e, Nid C T; (hbi-Nid);T

Model Checking Memory Models

& _ B
Given: Memory Models M, M,

KQuestion: Is M, weaker than M,?

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbge = acyclic hbygy)
hb7 e, Nid C T; (hbi-Nid);T

> KATER tool for a restricted fragment (regular language inclusion) [Kokologiannakis, 2023]

a | nur, | rp.r, | r*

Model Checking Memory Models

& B
Given: Memory Models M, M,

KQuestion: Is M, weaker than M,?

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbge = acyclic hbygy)
hb7 e, Nid C T; (hbi-Nid);T

> KATER tool for a restricted fragment (regular language inclusion) [Kokologiannakis, 2023]
a | nur, | rp.r, | r*

> QOur tool supports the regular fragment (based on cyclic proofs)

| | s X,

Model Checking Memory Models

& _ B
Given: Memory Models M, M,

KQuestion: Is M, weaker than M,?

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbge = acyclic hbygy)
hb7 e, Nid C T; (hbi-Nid);T

> KATER tool for a restricted fragment (regular language inclusion) [Kokologiannakis, 2023]

a | nur, | rp.r, | r*

> QOur tool supports the regular fragment (based on cyclic proofs)
| | s X,
“__— MM like LKMM are In this fragment!

Model Checking Memory Models

-~
Given: Memory Models M, M,
Relational T,
\Question: Is M, weaker than M,? cycle somewhere!

Approach: Check inclusion between relatiOnal algebra expressions

Example: TSO is weaker than SC

qcyclic hbge = acyclic hbygo)

> KATER tool for a restricted fragment (regular language inclusion) [Kokologiannakis, 2023]

a | nur, | rp.r, | r*

> QOur tool supports the regular fragment (based on cyclic proofs)
| | s X,
“__— MM like LKMM are In this fragment!

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

—[p0o; (PO; PO)™ U (PO; pO)*]

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

~[po; (POo; po)* U (pO; po)*]

o—0
—1PO; (PO; pO)*
—(pO; pO)*

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

~[po; (POo; po)* U (pO; po)*]

o—0
—1PO; (PO; pO)*
—(pO; pO)*

po”
0———0
—pO; (PO; PO)*

n %o; PO; (PO; pPO)*
=

(=)

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

~[po; (POo; po)* U (pO; po)*]

o—0
—1PO; (PO; pO)*
—(pO; pO)*

po’
0—0
—PO; (PO; PO)*

ﬂ%o; PO; (PO; pPO)*
=

(=)

* (*)
—po; (PO; PO)* PO; PO

G> ~pO; PO; (PO; PO)* 0: 3‘
mid ~po; (PO; PO)*

ﬂ%o; PO; (PO; PO)*
]

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

~[po; (POo; po)* U (pO; po)*]

o———0
—PO0; (PO; PO)*
—(PO; pO)*

o——0

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; pPO)*
=

=po; (PO; PO)* po; po’
° —po; po; (PO; PO)* o: ::c
~id =pO; (PO; PO)*
(W) —1PO; PO; (PO; PO)*

O - ~id

X

(=)

(*)

Cyclic Proof System

To prove po™ C po; (po; po)* U (po; po)*

o——0

—[p0o; (PO; PO)™ U (PO; pO)*]

po
0——0
—1PO; (PO; PO)*
—(PO; PO)*

(=)

po”
0———0
—pO; (PO; PO)*

ﬂ%o; PO; (PO; pPO)*
=

~Po; (PO; pO)*
O ~PO; PO; (po; po)*
l

O -

X

(W)

(*)

PO; PO°

o——0

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; PO)*
]

a proof tries to find a counterexample

PO

(a)

*

PO

—»

—1P0; (PO; PO)*
_'%0; PO; (PO; pPO)*
=

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

—[p0o; (PO; PO)™ U (PO; pO)*]

po*
[c—
—1PO; (PO; PO)*
—(PO; PO)*

(=)

po’
0—0
—PO; (PO; PO)*

ﬂ%o; PO; (PO; pPO)*
=

~Po; (PO; pO)*
O ~PO; PO; (po; po)*
l

O -

X

(W)

(*)

PO; PO°

o——0

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; PO)*
]|

(a)

*

po PO

4'
—1PO; (PO; PO)*

—PO; PO; (PO; PO)*

-id

(—a)

PO
~(po; po)*
~Po; (PO; pO)*

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; pO)*
=]

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

—[p0o; (PO; PO)™ U (PO; pO)*]

po
o——0
—1PO; (PO; PO)*
—(PO; PO)*

o——0

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; pPO)*
=

~po; (PO; PO)* po; po
©> -ro: po: (po: poy O—0
i —po; (po; po)*
(W) ~pO; Po; (PO; PO)*

O - "id

X

(=)

(*)

(a)

*

po PO

4'
—1PO; (PO; PO)*

—PO; PO; (PO; PO)*

-id

(—a)

PO
~(po; po)*
~Po; (PO; pO)*

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; pO)*
=]

(W)

—(PO; PO)*
—1P0; (PO; PO)*

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

—[p0o; (PO; PO)™ U (PO; pO)*]

o——0
—1PO; (PO; PO)*
—(PO; PO)*

o——0

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; pPO)*
=

~po; (PO; PO)* po; po
©> -ro: po: (po: poy O—0
i —po; (po; po)*
(W) ~pO; Po; (PO; PO)*

O - "id

X

(=)

(*)

(a)

*

po PO

4'
—1PO; (PO; PO)*

—PO; PO; (PO; PO)*

-id

(—a)

PO
~(po; po)*
~Po; (PO; pO)*

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; pO)*
=]

(W)

—(po; po)*
~PO; (PO; PO)*

Cyclic Proof System

To prove po” C po; (po; po)* U (po; po)* a proof tries to find a counterexample

o——0

—[p0o; (PO; PO)™ U (PO; pO)*]

o——0
—1PO; (PO; PO)*
—(PO; PO)*

(=)

po’
0—0
—PO; (PO; PO)*

ﬂ%o; PO; (PO; pPO)*
=

~Po; (PO; pO)*
O ~PO; PO; (po; po)*
l

O -

X

(W)

(*)

PO; PO°

o——0

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; PO)*
]|

(a)

*

po PO

4'
—1PO; (PO; PO)*

—PO; PO; (PO; PO)*

-id

(—a)

PO
~(po; po)*
~Po; (PO; pO)*

—1PO; (PO; PO)*
ﬂ%o; PO; (PO; pO)*
=]

(W)

—(po; po)*
~PO; (PO; PO)*

Cyclic Proof System

> (Graphs = represented by relational algebra expressions + event symbols

po’ — 0;po“n 1
0—0 - =[0; [PO; (PO; PO)™ U (pO; po)*| N 1]

=[PO; (PO; PO)* U (PO; pO)*]

Cyclic Proof System

> Graphs = represented by relational algebra expressions + event symbols

— 0;po N1
o—0 — =[0;[po; (po; Po)* U (po; po)*] N 1]

—[P0; (PO; PO)™ U (PO; pO)*]

> Proof system is sound + complete for relational algebra inclusions

Cyclic Proof System

> Graphs = represented by relational algebra expressions + event symbols

— 0;po N1
o—0 — =[0;[po; (po; Po)* U (po; po)*] N 1]

—[P0; (PO; PO)™ U (PO; pO)*]

> Proof system is sound + complete for relational algebra inclusions

/

Bound number of
events symbols

Cyclic Proof System

> Graphs = represented by relational algebra expressions + event symbols

— 0;po N1
o—0 — =[0;[po; (po; Po)* U (po; po)*] N 1]

—[P0; (PO; PO)™ U (PO; pO)*]

> Proof system is sound + complete for relational algebra inclusions

/ T~ CUT rule

Bound number of

events symbols O r -0 o Y |

Cyclic Proof System

> Graphs = represented by relational algebra expressions + event symbols

— 0;po N1
o—0 — =[0;[po; (po; Po)* U (po; po)*] N 1]

—[P0; (PO; PO)™ U (PO; pO)*]

> Proof system is sound + complete for relational algebra inclusions

/ T~ CUT rule

Bound number of

events symbols O r -0 o Y |

= Naive proof search is inefficient (EXPSPACE-complete)

CEGAR Proof Search

g Search proof R
- no CUTs

_ _J

CEGAR Proof Search

..

" Search proof A
- no CUTs —> Proof found?

: :
'
: :
'
'
'
'
. U
[y
. ’
.. ‘

CEGAR Proof Search

g Search proof R - -
—> Proof found’? —>

_

- no CUTs

_J

..

..

Yes

Property
satisfied

CEGAR Proof Search

g Search proof R - -
—> Proof found’? —>

- no CUTs
_

_J

..

Yes

counterexample
candidate

N\ l J

Is spurious? |

...

Property
satisfied

CEGAR Proof Search

..

g Search proof R

- no CUTs _>; Proof found? :L, :;Ezzzg
- D o l ________________________ ;
N
Analyze
counterexample
candidate

........................ ‘.
P .
N [y
N [
1 [
' [
N]
1 [
' [
N]

a : - No Property
. |Is spurious? i
b g violated

...

CEGAR Proof Search

g Search proof R

Backtrack search
- Apply CUT

Yes

..

' __ Yes Property
—» 2

- no CUTs : Proof found? .—> catisfiod

_ Y S l ________________________ ;

(D
Analyze
counterexample
candidate

No R Property

Is spurious? | .
P violated

...

CEGAR Proof Search

..

4 N Problem: checking inclusions in
Search proof Ves Probert _ | s
- 1o CUTS — Proof found? #» satl‘: fleg relational algebra is not sufficient
5 p o hbr,Nid C T: (hbi-nid);T
l x =1
~” SC
Analyze \ fencei': PO
counterexample
cand[date ’”‘iﬁ: .
Backtrack search v S \ > x ,
_ es | . o0 0 roperty
Apply CUT < Is spurious? > violated

CEGAR Proof Search

g Search proof R

- Apply CUT

..

' __ Yes Property
I,
- no CUTs —>: Proof found? .—> catisfiod
_ Y S l ________________________ ;
g A
Analyze
counterexample
candidate
Backtrack search T — x
Yes __No Property

Is spurious? | .
P violated

...

Problem: checking inclusions in
relational algebra is not sufficient

hb7o, Nid C T; (hb{-Nnid);T

x =1
«

fence: PO

Solution: use assumptions to
restrict graphs to executions

fence C po
po+ C PO
f:rf! Cid

CEGAR Proof Search

g Search proof R - -
—> Proof found’? —>

- no CUTs

L ale) assumtlonsJ

-

N\

Backtrack search
- Apply CUT

- Apply assumptio

~

Yes

..

Yes Property
satisfied

counterexample
candidate

........................ ‘.
P .
N [y
N [
1 [
' [
N]
1 [
' [
N]

_J

a : - No Property
- |s spurious? i
b . g violated

...

Problem: checking inclusions in
relational algebra is not sufficient

hb7o, Nid C T; (hb{-Nnid);T

x =1
«

fence: PO

Solution: use assumptions to
restrict graphs to executions

fence C po
po+ C PO
f:rf! Cid

Evaluation
Comparison with KATER

Table 1: TooL vs. KATER.

TooL KATER
Benchmark T(s) Res. T(s) Res.
COH1l<4+>COH2 2.36 — ERR
ECOl<>EC02 0.01 0.00
RA1<>RA2 1.72 0.00
RA1<>RA3 — ERR 0.00
RCl1<+>RrRC12 43.56 0.12
SC4+>SCFM 6.04 0.02
TSO<4>TSOFM — 0.06
IMM—ARM& 0.02 0.09
IMM—TSO — 0.01
PPC—PPC-S — 1.13
RC11—>ARMS 1.20 0.11
RC1l1—IMM 4.36 0.01
Rcll—PPC-W — 1.00
RC11F—PPC-SF 14.39 5.27
RC11RW—PPC-SF — 6.36
RC11s—ARMS8 3.06 0.12
cll—ppPc-s — 1.60 P

cll—PPC-W 8.78 % 0.66 %

Evaluation
Comparison with KATER

Table 1: TooL vs. KATER.

TooL KATER
Benchmark T(s) Res. T(s) Res.
COH1l<4+>COH2 2.36 — ERR
ECOl<>EC02 0.01 0.00
RA1<>RA2 1.72 0.00
RA1<>RA3 — ERR 0.00
RCl1<+>RrRC12 43.56 0.12
SC4+>SCFM 6.04 0.02
TSO<>TSOFM — 0.06
IMM—ARM& 0.02 0.09
IMM—TSO — 0.01
PPC—PPC-S — 1.13
RC11—ARMS 1.20 0.11
RC1l1—IMM 4.36 0.01
Rcll—PPC-W — 1.00
RC11F—PPC-SF 14.39 5.27
RC11RW—PPC-SF — 6.36
RC11s—ARMS8 3.06 0.12
cll—PPcC-S — 1.60 P
cll—prrPc-w 8.78 ® 0.66 ®

» Kater outperforms our tool

Evaluation
Comparison with KATER

Table 1: TooL vs. KATER.

TooL KATER
Benchmark T(s) Res. T(s) Res.
COH1l<4+>COH2 2.36 — ERR
ECOl<>EC02 0.01 0.00
RA1<>RA2 1.72 0.00
RA1<>RA3 — ERR 0.00
RCl1<+>RrRC12 43.56 0.12
SC4+>SCFM 6.04 0.02
TSO<>TSOFM — 0.06
IMM—ARM& 0.02 0.09
IMM—TSO — 0.01
PPC—PPC-S — 1.13
RC11—ARMS 1.20 0.11
RC1l1—IMM 4.36 0.01
Rcll—PPC-W - 1.00
RC11F—PPC-SF 14.39 5.27
RC11RW—PPC-SF — 6.36
RC11s—ARMS8 3.06 0.12
cll—PPcC-S — 1.60 P
cll—prrPc-w 8.78 | 0.66 ®

» Kater outperforms our tool

> QOur tool supports complex CAT
features (intersections, converses)

Evaluation

Comparison with KATER Successful applications
Table 3: LKMM tests.

Table 1: TOOL vs. KATER.
Table 2: MCA, OOTA and Benchmark T(s) Res.
TooL KATER UNIPROC.
NO-OOTA-SEM 0.04
Benchmark T(s) Res. T(s) Res. NO-OOTA-SYN 1.26 %
COH143COH2 2.36 — ERR Benchmark T(s) Res. MCA 7.75 *®
iicl)}—:i202 (1)2; 888 UNIPROC 0.20 vO0O-ONCE2ACQ 0.07
CAL<SRAS o ERR O:OO ARM-MCA 13.21 vO0-ONCE2REL 0.01
re11<5RC12 43.56 0.12 ARM-NO-OOTA 15.84 vO0O-ACQREL2MB 0.21 4
SC4>SCFM 6.04 0.02 IMM-MCA 0.21 x v04-ONCE2ACQ 0.26
TSO<>TSOFM — 0.06 IMM-NO-00TA 28.80 v04-ONCE2MB 0.21
TSO-MCA 0.11 v04-ONCE2REL 0.20
IMM—>ARMS8 0.02 0.09 TSO-NO-OOTA 0.38 v04-ACQREL2MB 5.57
IMM—TSO — 0.01
PPC—PPC-S — 1.13 v00 C vO01 21.54 "
RC11—ARMS 1.20 0.11 vO0l C v0O 536.36
RC1l1—I1MM 4.36 0.01 vOl C v02 0.05 %
Rcll—PPC-W — 1.00 v02 C vO01 0.05
RCl1F—pPPc-sF 14.39 5.27 v02 C v03 0.14
RC11RW—PPC-SF — 6.36 v03 C v02 0.07 %(?7)
RC11S—ARMS 3.06 0.12 ppo C po (v02) 0.05
cll—pPpPc-s — 160 % ppo C po (v03) 0.05
cll—pPPc-w 8.78 P 0.66 4

» Kater outperforms our tool

> QOur tool supports complex CAT
features (intersections, converses)

Evaluation

Comparison with KATER Successful applications
Table 3: LKMM tests.

Table 1: TOOL vs. KATER.
Table 2: MCA, OOTA and Benchmark T(s) Res.
TooL KATER UNIPROC.
NO-OOTA-SEM 0.04
Benchmark T(s) Res. T(s) Res. NO-OOTASYN 1.96 %
COH145COH2 2.36 — ERR Benchmark T(s) Res. MCA 7.75 %
Eicl)}—:i202 (1)2; 888 UNIPROC 0.20 vO0O-ONCEZ2ACQ 0.07
RA1SRAS _ ERR 0:00 ARM-MCA 13.21 vOO-ONCE2REL 0.01
rel1<3RC12 43.56 0.12 ARM-NO-OOTA 15.84 vOO-ACQREL2MB 0.21 P
SC4>SCFM 6.04 0.02 IMM-MCA 0.21 % vO4-ONCE2ACQ 0.26
TSO<STSOFM — 0.06 IMM-NO-0OOTA 28.80 v04-ONCE2MB 0.21
TSO-MCA 0.11 v04-ONCE2REL 0.20
IMM—>ARM& 0.02 0.09 TSO-NO-OOTA 0.38 v04-ACQREL2MB 5.57
IMM—TSO — 0.01
PPC—PPC-S — 1.13 v00 C vO1 21.54 %
RC11—ARMS 1.20 0.11 vOl € vO0O0 536.36
RC11—IMM 4.36 0.01 vOl € v02 0.05 &
Rcll—PPC-W — 1.00 v02 C vO01 0.05
RCl1F—pPPc-sF 14.39 5.27 v02 C v03 0.14
RC11RW—PPC-SF — 6.36 v03 C v02 0.07 %(?7)
RC11S—ARMS 3.06 0.12 ppo C po (v02) 0.05
cll—pPpPc-s — 160 % ppo C po (v03) 0.05
cll—prrPc-w 8.78 ® 0.66 ®

» Kater outperforms our tool > Analyzed MCA and OOTA for different MM

> QOur tool supports complex CAT
features (intersections, converses)

Evaluation

Comparison with KATER Successful applications
Table 3: LKMM tests.

Table 1: TOOL vs. KATER.
Table 2: MCA, OOTA and Benchmark T(s) Res.
TooL KATER UNIPROC.
NO-OOTA-SEM 0.04
Benchmark T(s) Res. T(s) Res. NO-OOTASYN 1.96 %
COH14>COH2 2.36 — ERR Benchmark T(s) Res. MCA 7.75 %
Eicl)}—:i202 (1)2; 888 UNIPROC 0.20 vO0O-ONCEZ2ACQ 0.07
RA1SRAS _ ERR 0.00 ARM-MCA 13.21 vOO-ONCE2REL 0.01
rel1<3RC12 43.56 0.12 ARM-NO-OOTA 15.84 vOO-ACQREL2MB 0.21 P
SC4>SCFM 6.04 0.02 IMM-MCA 0.21 % vO4-ONCE2ACQ 0.26
TSO<>TSOFM — 0.06 IMM-NO-OOTA 28.80 v04-ONCE2MB 0.21
TSO-MCA 0.11 v04-ONCEZ2REL 0.20
IMM—>ARM& 0.02 0.09 TSO-NO-OOTA 0.38 v04-ACQREL2MB 5.57
IMM—TSO — 0.01
PPC—PPC-S — 1.13 v00 C vO1 21.54 &
RC11—ARMS 1.20 0.11 vOl € vO0O0 536.36
RC11—IMM 4.36 0.01 vOl € v02 0.05 &
Rcll—PPC-W — 1.00 v02 C vO01 0.05
RCl1F—pPPc-sF 14.39 5.27 v02 C v03 0.14
RC11RW—PPC-SF — 6.36 v03 C v02 0.07 %(?7)
RC11S—ARMS 3.06 0.12 ppo C po (v02) 0.05
cl1l—PPC-S — 160 % ppo C po (v03) 0.05
cll—prPCc-w 8.78 ® 0.66 ®

» Kater outperforms our tool > Analyzed MCA and OOTA for different MM

» Our tool supports complex CAT ldentification of (known) LKMM bugs

features (intersections, converses)

Evaluation

Comparison with KATER Successful applications
Table 3: LKMM tests.

Table 1: TOOL vs. KATER.
Table 2: MCA, OOTA and Benchmark T(s) Res.
TooL KATER UNIPROC.
NO-OOTA-SEM 0.04
Benchmark T(s) Res. T(s) Res. NO-OOTASYN 1.96 %
COH145COH2 2.36 — ERR Benchmark T(s) Res. MCA 7.75 %
Eicl)}—:i202 ?2; 888 UNIPROC 0.20 vO0O-ONCEZ2ACQ 0.07
RA1<SRA3 _ ERR O:OO ARM-MCA 13.21 vOO-ONCE2REL 0.01
rol1l<RC12 43.56 0.12 ARM-NO-OOTA 15.84 vOO-ACQREL2MB 0.21 P
SC4>SCFM 6.04 0.02 IMM-MCA 0.21 % vO4-ONCE2ACQ 0.26
TSO<STSOFM — 0.06 IMM-NO-0OOTA 28.80 v04-ONCE2MB 0.21
TSO-MCA 0.11 v04-ONCE2REL 0.20
IMM—>ARMS& 0.02 0.09 TSO-NO-OOTA 0.38 v04-ACQREL2MB 5.57
IMM—TSO — 0.01
PPC—PPC-S — 1.13 v00 C vO1 21.54 %
RC11—ARMS 1.20 0.11 vOl € vO0O0 536.36
RC11—IMM 4.36 0.01 vOl € v02 0.05 &
Rcll—PPC-W — 1.00 v02 C vO01 0.05
RCl1F—pPPc-sF 14.39 5.27 v02 C v03 0.14
RC11RW—PPC-SF — 6.36 v03 C v02 0.07 %(?7)
RC11S—ARMS 3.06 0.12 ppo C po (v02) 0.05
cl1l—PPC-S — 160 % ppo C po (v03) 0.05
cll—prrPc-w 8.78 ® 0.66 ®

» Kater outperforms our tool > Analyzed MCA and OOTA for different MM

» Our tool supports complex CAT ldentification of (known) LKMM bugs

features (Intersections, converses) » Generation of useful counterexamples

Conclusion

Conclusion

> Memory Models need verification

Conclusion

> Memory Models need verification

> This can be achieved by checking inclusions in relational algebra

Conclusion

> Memory Models need verification
> This can be achieved by checking inclusions in relational algebra

> We provided a sound & complete proof system for relational algebra inclusions

Conclusion

> Memory Models need verification
> This can be achieved by checking inclusions in relational algebra
> We provided a sound & complete proof system for relational algebra inclusions

> We presented a CEGAR approach for an efficient proof search

Recent Decidability Results in Verification

Recent Decidability Results in Verification

Hard Problems In Verification

Complexity of VASS Reachability

Decidability of Regular Separability for VASS Reachability Languages
Decidability of PVASS Reachability

Decidability of BVASS Reachability

Decidability of DataVASS Reachabillity

Complexity of Parity Games

Hard Problems In Verification

—Gemp&eeaﬁe%%—ﬂe&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

Decidability of Regular Separability for VASS
Decidability of PVASS Reachability
Decidability of BVASS Reachability
Decidability of DataVASS Reachabillity

Complexity of Parity Games

Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

e T T e TS —_— [solved by us, with E. Keskin, LICS’24]

)¢
@

Decidability of PVASS Reachability
Decidability of BVASS Reachability
Decidability of DataVASS Reachabillity

Complexity of Parity Games

Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

Decidability of BVASS Reachability
Decidability of DataVASS Reachabillity

Complexity of Parity Games

[solved by us, with E. Keskin, LICS’24]

[solved by us, with E. Keskin and R. Guttenberg, under submission]

Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

—etteratetttr— SHTE i S re R 1wl AR A LV Y [solved by us, with E. Keskin, LICS’24]
—Becrd-a'b1+rt'y—of-P’v’79rS-S-Reach-a'b1+rty— [solved by us, with E. Keskin and R. Guttenberg, under submission]
— Decrdabrnty of BYASS Reachability [working on it, with J. Gréinke]

Decidability of DataVASS Reachabillity

Complexity of Parity Games

Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

—etteratetttr— SHTE i S re R 1wl AR A LV Y [solved by us, with E. Keskin, LICS’24]
—Becrd-a'b1+rt'y—of-P’v’79rS-S-Reach-a'b1+rty— [solved by us, with E. Keskin and R. Guttenberg, under submission]
— Decrdabrnty of BYASS Reachability [working on it, with J. Gréinke]

Decidability of DataVASS Reachabillity

—Gemplexity of Parity Games [working on it, with E. Keskin]

Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

———— SHTE R [solved by us, with E. Keskin, LICS’24]
—Becrd-a'b1+rt'y—of-P’v’79rS-S-Reach-a'b1+rty— [solved by us, with E. Keskin and R. Guttenberg, under submission]
— Decrdabrnty of BYASS Reachability [working on it, with J. Gréinke]

Decidability of DataVASS Reachabillity

—Gemplexity of Parity Games [working on it, with E. Keskin]

Regular Separability of
VASS Reachablllty Languages

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html

Regular Separability

Regular Separability

X e {Z,N}.

Regular Separability

X e {Z,N}.

X-REGSEP:
Given: Initialized VASS V| and V, over X .

Question: Does Ly (V) | Ly (V,) hold?

Regular Separability

Reachability languages.

X e {Z,N}.

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Lyx(V,) hold?

Regular Separability

Reachability languages.

X e {Z,N}.

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Lyx(V,) hold?

L, | L
dR C 2*regular. L CRARNL, =Q .

Regular Separability

X = {Z, N} Reachability languages. *

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Ly(V,) hold?

L, | L
dR C 2*regular. L CRARNL, =Q .

Regular Separability

X E {Z, N} Reachability languages. * *

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Ly(V,) hold?

VS.

Sk

X

L, | L
dR C 2*regular. L CRARNL, =Q .

Regular Separability

Regular Separability

Example:
1. {a".b" |neN} | {a".b" | n e N}.

Regular Separability

Example:
1. {a".b" |neN} | {a".b" | n e N}.

Yes! Separator: Even.Even U Odd.Odd.

Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

No! Assume A : L, | L, and A has m states.
Consider a1 . p"*! L, CLA) .

Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

No! Assume A : L, | L, and A has m states.
Consider a1 . p"*! L, CLA) . 6

Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

No! Assume A : L, | L, and A has m states. x
Consider a1 . p"*! L, CLA) . 6

Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

No! Assume A : L, | L, and A has m states. x
Consider a1 . p"*! L, CLA) . 6

Discussion:
Separability tries to understand the gap between languages.

Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

No! Assume A : L, | L, and A has m states. x
Consider a1 . p"*! L, CLA) . 6

Discussion:
Separability tries to understand the gap between languages.

Insight:
Modulo seems to play an important role!

Regular Separability

Regular Separability

Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]:
/ -REGSEP is decidable.

Regular Separability

Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]:
/ -REGSEP is decidable.

Regular Separability

Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]:
/ -REGSEP is decidable.

Theorem [LICS’24]:
N-REGSEP is decidable.

VASS Reachability

Deciding Reachability

Deciding Reachability

Approximations:

Deciding Reachability

Approximations:

Coverability graphs:
Good: Can keep counters non-negative.
Bad: Cannot guarantee precise counter values.

Deciding Reachability

Approximations:

Coverability graphs:
Good: Can keep counters non-negative.
Bad: Cannot guarantee precise counter values.

Marking Equation;
Good: Can guarantee precise counter values.
Bad: Cannot keep counters non-negative.

Deciding Reachability

Approximations:

Coverability graphs:
Good: Can keep counters non-negative.
Bad: Cannot guarantee precise counter values.

Marking Equation;
Good: Can guarantee precise counter values.
Bad: Cannot keep counters non-negative.

Solution:
Combine the two.

Deciding Reachability

Deciding Reachability

Challenge:
Coverability graphs need pumping to guarantee non-negativity.
Pumping has to respect the marking equation.

Deciding Reachability

Challenge:
Coverability graphs need pumping to guarantee non-negativity.
Pumping has to respect the marking equation.

Solution:
Only pump where the solution space is unbounded.

Deciding Reachability

Challenge:
Coverability graphs need pumping to guarantee non-negativity.
Pumping has to respect the marking equation.

Solution:
Only pump where the solution space is unbounded.

- - -
Phe S~

0,00 _O1) 0,w)

Deciding Reachability

Challenge:
Coverability graphs need pumping to guarantee non-negativity.
Pumping has to respect the marking equation.

Solution:
Only pump where the solution space is unbounded.

- - -
.” S~

o °» . XleJwithe € 6 have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.

Deciding Reachability

Deciding Reachability

Lemma:
Consider A - x = b over N* and variable X[i].

Deciding Reachability

Lemma:
Consider A - x = b over N* and variable X[i].

x[i] is unbounded in sol(A - x = b)
< ds e sol(A-x=0). s(x[i]) > O.

Deciding Reachability

Lemma:
Consider A - x = b over N* and variable X[i].

x[i] is unbounded in sol(A - x = b)
< ds e sol(A-x=0). s(x[i]) > O.

Support = the set of unbounded variables.

Deciding Reachability

Lemma:
Consider A - x = b over N* and variable X[i].

x[i] is unbounded in sol(A - x = b)
< ds e sol(A-x=0). s(x[i]) > O.

Support = the set of unbounded variables.

Support solution =
s € sol(A - x = 0) giving a positive value to all variables in the support.

Deciding Reachability

Lemma:
Consider A - x = b over N* and variable X[i].

x[i] is unbounded in sol(A - x = b)
< ds e sol(A-x=0). s(x[i]) > O.

Support = the set of unbounded variables.

Support solution =
s € sol(A - x = 0) giving a positive value to all variables in the support.

Note: Homogeneous solutions are stable under addition.

Deciding Reachability

- -
” S~

ps N x[?] with e € 6 have to be unbounded
, (04 (0,w) x[j] with j =2 IN the solution space.

Deciding Reachability

- - o
" S~

, . XleJwithe € 6 have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.

So far:
Pumping where the solution space is unbounded
= pumping should yield a support solution.

Deciding Reachability

- -
e” S~

, . XleJwithe € 6 have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.

So far:
Pumping where the solution space is unbounded
= pumping should yield a support solution.

Problem:
o may not match a support solution s.

Deciding Reachability

- -
e” S~

, . XleJwithe € 6 have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.

So far:
Pumping where the solution space is unbounded
= pumping should yield a support solution.

Problem:
o may not match a support solution s.

ldea:
Turn s — w(o) into a path.

Deciding Reachability

- -
e” S~

, . XleJwithe € have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.

So far:
Pumping where the solution space is unbounded
= pumping should yield a support solution.

Problem:;
o may not match a support solution s. Parikh image.

ldea: |
Turn s — w(o) into a path.

Deciding Reachability

Deciding Reachability

Lemma (Euler-Kirchhoff):
Let G = (V, E) be a strongly connected directed graph.

Let x : N satisfy

Deciding Reachability

Lemma (Euler-Kirchhoff):
Let G = (V, E) be a strongly connected directed graph.

Let x : N satisfy

2 xle] = 2 x[e] VvevV

62(—,V) €:(V,—)

x> 1

Deciding Reachability

Lemma (Euler-Kirchhoff):
Let G = (V, E) be a strongly connected directed graph.

Let x : N satisfy

2 xle] = 2 x[e] VvevV

62(—,V) €:(V,—)

x> 1

Then there is a cycle ¢ in G with y(c) = x.
Also write ¢ = (x).

Deciding Reachability

Lemma (Euler-Kirchhoff):
Let G = (V, E) be a strongly connected directed graph.

Let x : N satisfy

2 xle] = Z x[e] VvevV

e:(—,V) €:(V,—)

x> 1

Then there is a cycle ¢ in G with y(c) = x.

Also write ¢ = (x).

Deciding Reachability

Deciding Reachability

Pumping should yield a support solution:

Deciding Reachability

Pumping should yield a support solution:

Let s be a support solution with

Deciding Reachability

Pumping should yield a support solution:

Let s be a support solution with

d.=s—w(up)—wdn) > 1.

Deciding Reachability

Pumping should yield a support solution:
Let s be a support solution with

d.=s—w(up)—wdn) > 1.

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

Deciding Reachability

Pumping should yield a support solution:
Let s be a support solution with

d.=s—w(up)—wdn) > 1.

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

w=(d) .

Deciding Reachability

Pumping should yield a support solution:
Let s be a support solution with

d.=s—w(up)—wdn) > 1.

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle
w=(d) .

Now w(up) + w(w) + w(dn) = s and we say they match.

Deciding Reachability

Deciding Reachability

Lambert’s lteration Lemma [TCS’92]:

For ¢ large enough, one can even fit in a Z-cycle
that reaches the exit from the entry marking:

Deciding Reachability

Lambert’s lteration Lemma [TCS’92]:

For ¢ large enough, one can even fit in a Z-cycle
that reaches the exit from the entry marking:

upc.p.w.dn .

Deciding Reachability

Lambert’s lteration Lemma [TCS’92]:

For ¢ large enough, one can even fit in a Z-cycle
that reaches the exit from the entry marking:

upc.p.w.dn .

Since pumping happens in a support solution, this still solves reachability.
Notably, it stays non-negative.

Deciding Reachability

Deciding Reachability

Problem: Precovering graphs may not be perfect.

Deciding Reachability

Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

Deciding Reachability

Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

MGTS .,1.‘0. ,1.%. ,1.%.
¢

Yo—¢ Yo— ¢ %o

Deciding Reachability

Deciding Reachability

Deciding Reachabillity:

Deciding Reachability

Deciding Reachabillity:

As long as perfectness fails, decomposition is guaranteed to succeed.

Deciding Reachability

Deciding Reachabillity:
As long as perfectness fails, decomposition is guaranteed to succeed.

It yields finite sets of MGTS that are smaller in a well-founded order.

Deciding Reachability

Deciding Reachabillity:
As long as perfectness fails, decomposition is guaranteed to succeed.
It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

Deciding Reachability

Deciding Reachabillity:
As long as perfectness fails, decomposition is guaranteed to succeed.
It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS,

Deciding Reachability

Deciding Reachabillity:
As long as perfectness fails, decomposition is guaranteed to succeed.
It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS,

N-reachability holds < Z-reachability holds.

IL
o"ﬂ f’&

";3_3 ‘32 Technische
| ¢ 2
%

> Universitat
©)

o *¢ Braunschweig
scY

We are hiring!

Associate Professorship in Verification (tenured, W2)

Please inform your postdocs and colleagues who may be interested!
Please contact me for questions!

