
IFIP WG 2.3, Athens, May 2025

Verification under Weak Consistency and
Recent Decidability Results in Verification

Roland Meyer, TU Braunschweig Joint work with the best PhD students in the world :)

Verification under Weak Consistency

Introductory example

 x = y = 0
(a) x = 1; | (c) y = 1;
(b) r1 = y; | (d) r2 = x;

Introductory example

 x = y = 0
(a) x = 1; | (c) y = 1;
(b) r1 = y; | (d) r2 = x;

Q: What are the possible outcomes
for the values of r1 and r2?

Introductory example

 x = y = 0
(a) x = 1; | (c) y = 1;
(b) r1 = y; | (d) r2 = x;

Q: What are the possible outcomes
for the values of r1 and r2?

A: Check all possible interleavings!

Introductory example

 x = y = 0
(a) x = 1; | (c) y = 1;
(b) r1 = y; | (d) r2 = x;

Q: What are the possible outcomes
for the values of r1 and r2?

A: Check all possible interleavings!

(a).(b).(c).(d)

(a).(c).(b).(d)

(a).(c).(d).(b)

(c).(d).(a).(b)

(c).(a).(d).(b)

(c).(a).(b).(d)

Introductory example

 x = y = 0
(a) x = 1; | (c) y = 1;
(b) r1 = y; | (d) r2 = x;

Q: What are the possible outcomes
for the values of r1 and r2?

A: Check all possible interleavings!

(a).(b).(c).(d)

(a).(c).(b).(d)

(a).(c).(d).(b)

(c).(d).(a).(b)

(c).(a).(d).(b)

(c).(a).(b).(d)

r1 = 0, r2 = 1

r1 = 1, r2 = 1

r1 = 1, r2 = 1

r1 = 1, r2 = 0

r1 = 1, r2 = 1

r1 = 1, r2 = 1

Introductory example

 x = y = 0
(a) x = 1; | (c) y = 1;
(b) r1 = y; | (d) r2 = x;

Q: What are the possible outcomes
for the values of r1 and r2?

A: Check all possible interleavings!

(a).(b).(c).(d)

(a).(c).(b).(d)

(a).(c).(d).(b)

(c).(d).(a).(b)

(c).(a).(d).(b)

(c).(a).(b).(d)

r1 = 0, r2 = 1

r1 = 1, r2 = 1

r1 = 1, r2 = 1

r1 = 1, r2 = 0

r1 = 1, r2 = 1

r1 = 1, r2 = 1

r1 = r2 = 0 seems impossible…

Introductory example

 x = y = 0
(a) x = 1; | (c) y = 1;
(b) r1 = y; | (d) r2 = x;

Q: What are the possible outcomes
for the values of r1 and r2?

A: Check all possible interleavings!

(a).(b).(c).(d)

(a).(c).(b).(d)

(a).(c).(d).(b)

(c).(d).(a).(b)

(c).(a).(d).(b)

(c).(a).(b).(d)

r1 = 0, r2 = 1

r1 = 1, r2 = 1

r1 = 1, r2 = 1

r1 = 1, r2 = 0

r1 = 1, r2 = 1

r1 = 1, r2 = 1

r1 = r2 = 0 seems impossible…

…practice says otherwise!

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = y;

(c) y = 1;

(d) r2 = x;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = y;

(c) y = 1;

(d) r2 = x;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = y;

x = 0

y = 0

(c) y = 1;

(d) r2 = x;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = y;

x = 0

y = 0

x = 1
(c) y = 1;

(d) r2 = x;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = y;

x = 0

y = 0

y = 1x = 1
(c) y = 1;

(d) r2 = x;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = 0;

x = 0

y = 0

y = 1x = 1
(c) y = 1;

(d) r2 = x;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = 0;

x = 0

y = 0

y = 1x = 1
(c) y = 1;

(d) r2 = 0;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = 0;

x = 1

y = 1

(c) y = 1;

(d) r2 = 0;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = 0;

x = 1

y = 1

(c) y = 1;

(d) r2 = 0;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

This behavior is not captured by an interleaving!

Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(a) x = 1;

(b) r1 = 0;

x = 1

y = 1

(c) y = 1;

(d) r2 = 0;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

This behavior is not captured by an interleaving!

Understanding the program semantics requires
understanding the memory architecture!

Memory architectures (sketched)

Memory architectures (sketched)
Store buffer

Store BufferStore Buffer

Main Memory

CPU CPU

Memory architectures (sketched)
Store/Load buffer

Store/Load BufferStore/Load Buffer

Main Memory

CPU CPU

Memory architectures (sketched)
Store/Load buffer, instruction buffer

Store/Load BufferStore/Load Buffer

Main Memory

CPU CPU

Instruction Buffer Instruction Buffer

Memory architectures (sketched)
Store/Load buffer, instruction buffer, decentralised memory

Store/Load BufferStore/Load Buffer

CPU CPU

Memory Memory
Instruction Buffer Instruction Buffer

Memory architectures (sketched)
Store/Load buffer, instruction buffer, decentralised memory

Store/Load BufferStore/Load Buffer

CPU CPU

Memory Memory
Instruction Buffer Instruction Buffer

… and much more

Memory architectures (sketched)
Store/Load buffer, instruction buffer, decentralised memory

Store/Load BufferStore/Load Buffer

CPU CPU

Memory Memory
Instruction Buffer Instruction Buffer

… and much more

All these memory details affect the program semantics!

Memory architectures (sketched)
Store/Load buffer, instruction buffer, decentralised memory

Store/Load BufferStore/Load Buffer

CPU CPU

Memory Memory
Instruction Buffer Instruction Buffer

… and much more

All these memory details affect the program semantics!

So we need to model them!

Program semantics

Capturing program semantics
Problems so far

Interleavings are insufficient to capture program behavior

Capturing program semantics
Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

Capturing program semantics
Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

Requires all details of the memory architecture: too complex too quickly!

Capturing program semantics
Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

Requires all details of the memory architecture: too complex too quickly!

Forget about architectural details!
Directly model observable behavior!

Capturing program semantics
Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

Requires all details of the memory architecture: too complex too quickly!

Forget about architectural details!
Directly model observable behavior!

Axiomatic program/memory semantics!

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

x = 1

y = 1

(c) y = 1;

(d) r2 = 0;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

x = 1

y = 1

(c) y = 1;

(d) r2 = 0;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

x = 1

y = 1

(c) y = 1;

(d) r2 = 0;

Store BufferStore Buffer

Main Memory

P0 P1

(I1) x = 0; (I2) y = 0;

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

(c) y = 1;

(d) r2 = 0;

P0 P1

(I1) x = 0; (I2) y = 0;

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

(c) y = 1;

(d) r2 = 0;

P0 P1

(I1) x = 0; (I2) y = 0;

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

(c) y = 1;

(d) r2 = 0;

P0 P1

(I1) x = 0; (I2) y = 0;

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

(c) y = 1;

(d) r2 = 0;

P0 P1

(I1) x = 0; (I2) y = 0;

Program executions described by labelled graphs

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

(c) y = 1;

(d) r2 = 0;

P0 P1

(I1) x = 0; (I2) y = 0;

Program executions described by labelled graphs

No more interleavings!

Axiomatic program semantics
Example

(a) x = 1;

(b) r1 = 0;

(c) y = 1;

(d) r2 = 0;

P0 P1

(I1) x = 0; (I2) y = 0;

Program executions described by labelled graphs

No more interleavings!

No details of the memory architecture!

Consistency models with CAT*

*
Jade Alglave, Luc Maranget, Michael Tautschnig:
Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36(2): 7:1-7:74 (2014)

https://dblp.org/pid/89/6370.html
https://dblp.org/pid/49/4972.html
https://dblp.org/pid/18/1323.html
https://dblp.org/db/journals/toplas/toplas36.html#AlglaveMT14

Consistency models with CAT*

*
Jade Alglave, Luc Maranget, Michael Tautschnig:
Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36(2): 7:1-7:74 (2014)

Industry
Standard

https://dblp.org/pid/89/6370.html
https://dblp.org/pid/49/4972.html
https://dblp.org/pid/18/1323.html
https://dblp.org/db/journals/toplas/toplas36.html#AlglaveMT14

Memory consistency models

A memory consistency model answers the following question:  

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

W(x,1)

R(x)=1

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

W(x,1)

R(x)=1

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

W(x,1)

R(x)=1

R(x)=1

W(x,1)

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

W(x,1)

R(x)=1

R(x)=1

W(x,1)

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

W(x,1)

R(x)=1

R(x)=1

W(x,1)

W(x,1)

R(x)=2

W(x,2)

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

W(x,1)

R(x)=1

R(x)=1

W(x,1)

W(x,1)

R(x)=2

W(x,2)

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

The CAT language is used to formulate memory consistency models

W(x,1)

R(x)=1

R(x)=1

W(x,1)

W(x,1)

R(x)=2

W(x,2)

Memory consistency models

A memory consistency model answers the following question:  
Given an anarchic execution, is it observable?

The CAT language is used to formulate memory consistency models

Restrict the shape (events & relations) of executions

W(x,1)

R(x)=1

R(x)=1

W(x,1)

W(x,1)

R(x)=2

W(x,2)

Memory consistency models
The CAT language

CAT uses existing (base) relations

Memory consistency models
The CAT language

CAT uses existing (base) relations

Program order
Coherence order
Read-from relation
…

Base relations

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

Program order
Coherence order
Read-from relation
…

Base relations

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

Program order
Coherence order
Read-from relation
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

Program order
Coherence order
Read-from relation
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations

Relation algebra: ∪ , ∩ , ∖, ; , ∙−1 , ∙+ , …

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

CAT puts constraints on relations, happens-before has to be acyclic

Program order
Coherence order
Read-from relation
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations

Relation algebra: ∪ , ∩ , ∖, ; , ∙−1 , ∙+ , …

Memory consistency models
The CAT language

CAT uses existing (base) relations to define new ones (derived)

CAT puts constraints on relations, happens-before has to be acyclic

Program order
Coherence order
Read-from relation
…

acyclic (Happens-before)
empty (Atomicity violation)
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

Relation algebra: ∪ , ∩ , ∖, ; , ∙−1 , ∙+ , …

The CAT language (example)

Program order
Coherence order
Read-from relation
…

acyclic (Happens-before)
empty (Atomicity violation)
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

R(x)=1

W(x,1)

Memory consistency models

The CAT language (example)

Program order
Coherence order
Read-from relation
…

acyclic (Happens-before)
empty (Atomicity violation)
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

R(x)=1

W(x,1)

R(x)=1

W(x,1)

hb = po rf∪

Memory consistency models

The CAT language (example)

Program order
Coherence order
Read-from relation
…

acyclic (Happens-before)
empty (Atomicity violation)
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

R(x)=1

W(x,1)

R(x)=1

W(x,1)

hb = po rf∪ acyclic (hb)

Inconsistent

Memory consistency models

The CAT language (example)

Program order
Coherence order
Read-from relation
…

acyclic (Happens-before)
empty (Atomicity violation)
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

W(x,1)

R(x)=2

W(x,2)

Memory consistency models

The CAT language (example)

Program order
Coherence order
Read-from relation
…

acyclic (Happens-before)
empty (Atomicity violation)
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

W(x,1)

R(x)=2

W(x,2) fr = rf-1 co; W(x,1)

R(x)=2

W(x,2)

Memory consistency models

The CAT language (example)

Program order
Coherence order
Read-from relation
…

acyclic (Happens-before)
empty (Atomicity violation)
…

Conflict relation
Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

acyclic (po fr)W(x,1)

R(x)=2

W(x,2) fr = rf-1 co; W(x,1)

R(x)=2

W(x,2) ∪

Inconsistent

Memory consistency models

Memory consistency models
Outlook

Memory consistency models
Outlook

Beyond hardware memory architectures!

Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings

Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings

 Library specifications: RCU, pthread, safe memory reclamation, …

Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings

 Library specifications: RCU, pthread, safe memory reclamation, …

 (B) Distributed systems (~ communication protocols)

Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings

 Library specifications: RCU, pthread, safe memory reclamation, …

 (B) Distributed systems (~ communication protocols)

 (C) Databases (~ database isolation levels)

Dartagnan

Dartagnan
Model checking real code

Dartagnan

Dartagnan
Model checking real code

Program

CAT

Dartagnan
Specification

Configuration

Dartagnan
Model checking real code

Program

CAT

Dartagnan
Specification

Configuration

C/Linux code (LLVM), Litmus code (x86, RISCV, PPC, ARMv8, Nvidia PTX)
Can automatically compile C/Linux code to hardware!

Dartagnan
Model checking real code

Program

CAT

Dartagnan
Specification

Configuration

C/Linux code (LLVM), Litmus code (x86, RISCV, PPC, ARMv8, Nvidia PTX)

user assertions
liveness

data races

Can automatically compile C/Linux code to hardware!

Dartagnan
Model checking real code

Program

CAT

Dartagnan
Specification

Configuration

C/Linux code (LLVM), Litmus code (x86, RISCV, PPC, ARMv8, Nvidia PTX)

user assertions
liveness

data races

Can automatically compile C/Linux code to hardware!

unrolling bound
…

Dartagnan
Model checking real code

Program

CAT

Dartagnan
Specification

Configuration ?
(Bounded safety)

C/Linux code (LLVM), Litmus code (x86, RISCV, PPC, ARMv8, Nvidia PTX)

user assertions
liveness

data races

Can automatically compile C/Linux code to hardware!

unrolling bound
…

Dartagnan
Internals

Program

CAT

Dartagnan

Specification

Configuration ?
(Bounded safety)

Program
transformations

Static analyses

SMT solving

Dartagnan
Internals

Program

CAT

Dartagnan

Specification

Configuration ?
(Bounded safety)

Program
transformations

Static analyses

SMT solving

Alias Analysis
Control-Flow Analysis (find basic blocks of instructions executed together, control-flow variables)

Constant Propagation
Def-Use-Analysis

Dominator Analysis
Expression Simplification

Function Call Devirtualization (resolve call targets)
Function Inlining

Live Variables
Loop Unrolling

Mem2Reg (treat stack as registers)
Normalize Loops (single backjump, single entry)

Reaching Definitions
Sparse Conditional Constant Propagation (constant propagation + dead code elimination)

Spin Loop Detection and Instrumentation for Dynamic Detection
Symmetry Breaking

Dartagnan
Internals

Program

CAT

Dartagnan

Specification

Configuration ?
(Bounded safety)

SMT solving

Program
transformations

Static analyses

Thomas Haas, René Maseli, Roland Meyer, Hernán Ponce de León:
Static Analysis of Memory Models for SMT Encodings @ OOPSLA23

Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach,
Keijo Heljanko, Roland Meyer: BMC for Weak Memory Models:
Relation Analysis for Compact SMT Encodings @ CAV19

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/205/5236.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html

Dartagnan
Internals

Program

CAT

Dartagnan

Specification

Configuration ?
(Bounded safety)

SMT solving

Thomas Haas, Roland Meyer, Hernán Ponce de León:
CAAT: consistency as a theory @ OOPSLA22

Program
transformations

Static analyses

Thomas Haas, René Maseli, Roland Meyer, Hernán Ponce de León:
Static Analysis of Memory Models for SMT Encodings @ OOPSLA23

Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach,
Keijo Heljanko, Roland Meyer: BMC for Weak Memory Models:
Relation Analysis for Compact SMT Encodings @ CAV19

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/205/5236.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html

Encoding CAT into logical theories
Thomas Haas, Roland Meyer, Hernán Ponce de León:
CAAT: consistency as a theory @ OOPSLA22

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html
https://dblp.org/pid/57/11444.html

CAT in logical theories

CAT in logical theories
• CAT has simple operations over relations:  

 
 Easily encodable into plain SAT (over finite domain) 

 
 

; , ∪ , ∩ , ∖, ∙−1

→

CAT in logical theories
• CAT has simple operations over relations:  

 
 Easily encodable into plain SAT (over finite domain) 

 
 

; , ∪ , ∩ , ∖, ∙−1

→

• CAT has axioms on relations: empty, irreflexive, acyclic 
 

 Emptiness and irreflexivity encodable into plain SAT; 
Acyclicity encodable into integer difference logic (SMT)
→

CAT in logical theories
• CAT has simple operations over relations:  

 
 Easily encodable into plain SAT (over finite domain) 

 
 

; , ∪ , ∩ , ∖, ∙−1

→

• CAT has axioms on relations: empty, irreflexive, acyclic 
 

 Emptiness and irreflexivity encodable into plain SAT; 
Acyclicity encodable into integer difference logic (SMT)
→

Problem: CAT allows for (non-linear) recursive definitions with
(stratified) least fixed point semantics!

CAT in logical theories
• CAT has simple operations over relations:  

 
 Easily encodable into plain SAT (over finite domain) 

 
 

; , ∪ , ∩ , ∖, ∙−1

→

• CAT has axioms on relations: empty, irreflexive, acyclic 
 

 Emptiness and irreflexivity encodable into plain SAT; 
Acyclicity encodable into integer difference logic (SMT)
→

Problem: CAT allows for (non-linear) recursive definitions with
(stratified) least fixed point semantics!

Existing theories have a hard time capturing least fixed point semantics!TSO

Dartagnan
Memory-model-parametric BMC

Program

CAT

φ ∧ φ ∧ φ
Dartagnan

SMT solver

𝒯𝖲𝖠𝖳
𝒯𝖫𝖨𝖠

𝒯𝖡𝖵

𝒯𝖨𝖣𝖫 𝒯…

UNSAT SAT

Eager encoding using standard theories

Dartagnan + CAAT
Memory-model-parametric BMC with CAAT

Program

CAT

φ ∧ φ ∧ φ
Dartagnan

SMT solver

𝒯𝖲𝖠𝖳
𝒯𝖫𝖨𝖠

𝒯𝖡𝖵

𝒯𝖨𝖣𝖫 𝒯…

UNSAT SAT

Base relations only

CAT as theory

CAT as logical theory

rf

po

co

…

fr
hb

po-tso

rf−1
acyclic

…
…

ext
rfe

Base relations Derived relations Axioms

let fr = rf^-1;co
let po-tso = (po \ WxR) | mfence
let hb = po-tso | (rf & ext) | fr | co
acyclic hb
// more relations & axioms

TSO

CAAT: Consistency as a Theory

b1

b3

b0

…

d1 d3

d4

d0

acyclic

…
…

b2
d2

AxiomsBase relations Derived relations

Hidden inside 𝒯𝒯

CAAT: Consistency as a Theory

b1

b3

b0

…

d1 d3

d4

d0

acyclic

…
…

b2
d2

AxiomsBase relations Derived relations

Hidden inside 𝒯𝒯

See CAT as logical theory over the base relations!TSO

How does it work?

Theory solving for SC
let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

φ

Theory solving for SC

rf

po

co

Base relations

φ

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

Theory solving for SC

rf

po

co
fr

hbrf−1

Base relations Derived relations

1. Derive (Bottom-Up)

φ

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

Theory solving for SC

rf

po

co
fr

hbrf−1
acyclic

Base relations Derived relations Axioms

1. Derive (Bottom-Up)

2. Check

φ

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

Theory solving for SC

rf

po

co
fr

hbrf−1
acyclic

Base relations Derived relations Axioms

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

Theory solving for SC

rf

po

co
fr

hbrf−1

Base relations Derived relations

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

Theory solving for SC

rf

po

co

Base relations

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

Theory solving for SC

rf

po

co

Base relations

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

Expl.

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

Program order:

0:init(&g, 0)

Read-from:
Coherence: let fr = rf^-1;co

let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

Program order:

0:init(&g, 0)

Read-from:
Coherence:

po(1,2) ∧ po(2,3) ∧ po(4,5) ∧ po(5,6) ∧ po(6,7)

∧ rf(0,3) ∧ rf(1,6) ∧ rf(2,7)

∧ co(0,4) ∧ co(5,2)

φ =

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

Program order:

0:init(&g, 0)

Read-from:
Coherence:

1. Derive (Bottom-Up)

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

Program order:

0:init(&g, 0)

Read-from:
Coherence:

1. Derive (Bottom-Up)

From-read:

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:
From-read:

Happens-before:

1. Derive (Bottom-Up)

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:
From-read:

Happens-before:

2. Check

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:
From-read:

Happens-before:

2. Check

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:
From-read:

Happens-before:

3. Explain (Top-Down)

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:
From-read:

3. Explain (Top-Down)

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:

3. Explain (Top-Down)

let fr = rf^-1;co
let hb = po | rf | fr | co
acyclic hb

SC

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:

3. Explain (Top-Down)

po(1,2) ∧ po(2,3) ∧ po(4,5) ∧ po(5,6) ∧ po(6,7)

∧ rf(0,3) ∧ rf(1,6) ∧ rf(2,7)

∧ co(0,4) ∧ co(5,2)

= φ
po(2,3) ∧ po(4,5)

∧ rf(0,3)

∧ co(0,4) ∧ co(5,2)
⊑

 1:store(&f, 1);

 2:store(&t, 2);

 while(
3:load(&g) == 1

 &&

 load(&t) == 2) {}

 4:store(&g, 1);

 5:store(&t, 1);

 while(
 6:load(&f) == 1

 &&

 7:load(&t) == 1) {}

0:init(&g, 0)

Program order:
Read-from:
Coherence:

3. Explain (Top-Down)

po(1,2) ∧ po(2,3) ∧ po(4,5) ∧ po(5,6) ∧ po(6,7)

∧ rf(0,3) ∧ rf(1,6) ∧ rf(2,7)

∧ co(0,4) ∧ co(5,2)

= φ
po(2,3) ∧ po(4,5)

∧ rf(0,3)

∧ co(0,4) ∧ co(5,2)
⊑

Explanation: 𝒯SC ⊧ ¬(po(2,3) ∧ po(4,5) ∧ rf(0,3) ∧ co(0,4) ∧ co(5,2))TSO

A Theory Solver for Consistency

Derive

Check

Explain

inconsistent

sat

φconj.

explanation

Theory Solver𝒯

A Decision Procedure for Consistency

Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

inconsistent

explanation

A Decision Procedure for Consistency

Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

inconsistent

explanation

≈

model of ψ

Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

A Decision Procedure for Consistency

inconsistent

explanation

≈

model of ψ

Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

Add explanation,
generate new model

& repeat

A Decision Procedure for Consistency

inconsistent

explanation

≈

model of ψ

Evaluation

Evaluation: simple CATs
No recursion

Evaluation: simple CATs

Simple CATs: CAAT is barely faster than standard theories

No recursion

Evaluation: complex CATs
Linear recursion

Evaluation: complex CATs

Complex CATs: CAAT is 2-20x faster than standard theories

Linear recursion

Evaluation: very complex CATs
Non-linear recursion

Evaluation: very complex CATs
Non-linear recursion

Very complex CATs: CAAT is up to 100x faster than standard theories

Conclusion

• We see consistency models as a family of theories  

• Consistency theories handle least fixed points, unlike existing theories 

• We give a general theory solver for consistency theories 

• Using CAAT in BMC gives substantial performance improvement

Ongoing Work

• Online integration with the SMT solver

• Incrementality is a problem — the partial models are often largely different, 
because other theories make the solver backtrack!

• Use matching instead!

Cyclic Proofs for
Axiomatic Memory Models

ongoing work with Jan Grünke and Thomas Haas

Cyclic Proofs for Axiomatic Memory Models

Memory Models have Bugs

119

Cyclic Proofs for Axiomatic Memory Models

Memory Models have Bugs

119

The Java Memory Model

Fixing the Java Memory Model

• Java MM

‣ too weak to build new synchronization primitives

‣ too strong for common compiler optimizations (i.e. CSE)

[JLS 1996]

[Pugh]

[Pugh]

Cyclic Proofs for Axiomatic Memory Models

Memory Models have Bugs

119

The Java Memory Model

Fixing the Java Memory Model

• Java MM

‣ too weak to build new synchronization primitives

‣ too strong for common compiler optimizations (i.e. CSE)

[JLS 1996]

[Pugh]

[Pugh]

• C/C++11 MM

‣ common compiler optimizations are invalid

‣ allows strange behavior (i.e. OOTA)

‣ SC fences are too weak

‣ unsound compilation schemes to POWER

[Vafeiadis et. al]

[Sarkar et. al]

[Lahav et. al]

[Vafeiadis et. al]

Cyclic Proofs for Axiomatic Memory Models

Memory Models have Bugs

119

The Java Memory Model

Fixing the Java Memory Model

• Java MM

‣ too weak to build new synchronization primitives

‣ too strong for common compiler optimizations (i.e. CSE)

[JLS 1996]

[Pugh]

[Pugh]

• C/C++11 MM

‣ common compiler optimizations are invalid

‣ allows strange behavior (i.e. OOTA)

‣ SC fences are too weak

‣ unsound compilation schemes to POWER

[Vafeiadis et. al]

[Sarkar et. al]

[Lahav et. al]

[Vafeiadis et. al]

➡ Need for automatic Memory Model verification!

Dartagnan
Checking the Linux Kernel

Dartagnan
Checking the Linux Kernel

Dartagnan found qspinlock to be broken (according to LKMM): 
it was racy, failed to provide mutual exclusion, and could deadlock

Dartagnan
Checking the Linux Kernel

Dartagnan found qspinlock to be broken (according to LKMM): 
it was racy, failed to provide mutual exclusion, and could deadlock
Antonio Paolillo, Hernán Ponce de León, Thomas Haas, Diogo Behrens, Rafael Lourenco de Lima Chehab, Ming Fu, Roland Meyer:
Verifying and Optimizing Compact NUMA-Aware Locks on Weak Memory Models @ arXiv

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Dartagnan
Checking the Linux Kernel

Dartagnan found qspinlock to be broken (according to LKMM): 
it was racy, failed to provide mutual exclusion, and could deadlock

However: qspinlock runs fine on hardware (TSO, Power, ARMv8, RISCV)

Antonio Paolillo, Hernán Ponce de León, Thomas Haas, Diogo Behrens, Rafael Lourenco de Lima Chehab, Ming Fu, Roland Meyer:
Verifying and Optimizing Compact NUMA-Aware Locks on Weak Memory Models @ arXiv

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Sd

Dartagnan
Checking the Linux Kernel

Dartagnan found qspinlock to be broken (according to LKMM): 
it was racy, failed to provide mutual exclusion, and could deadlock

However: qspinlock runs fine on hardware (TSO, Power, ARMv8, RISCV)
Anarchic semantics

LKMM semantics

Hardware semantics

Antonio Paolillo, Hernán Ponce de León, Thomas Haas, Diogo Behrens, Rafael Lourenco de Lima Chehab, Ming Fu, Roland Meyer:
Verifying and Optimizing Compact NUMA-Aware Locks on Weak Memory Models @ arXiv

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Sd

Dartagnan
Checking the Linux Kernel

Dartagnan found qspinlock to be broken (according to LKMM): 
it was racy, failed to provide mutual exclusion, and could deadlock

However: qspinlock runs fine on hardware (TSO, Power, ARMv8, RISCV)
Anarchic semantics

LKMM semantics

Hardware semantics
Buggy behavior

Antonio Paolillo, Hernán Ponce de León, Thomas Haas, Diogo Behrens, Rafael Lourenco de Lima Chehab, Ming Fu, Roland Meyer:
Verifying and Optimizing Compact NUMA-Aware Locks on Weak Memory Models @ arXiv

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Sd

Dartagnan
Checking the Linux Kernel

Dartagnan found qspinlock to be broken (according to LKMM): 
it was racy, failed to provide mutual exclusion, and could deadlock

However: qspinlock runs fine on hardware (TSO, Power, ARMv8, RISCV)
Anarchic semantics

LKMM semantics

Hardware semantics
Buggy behavior

Antonio Paolillo, Hernán Ponce de León, Thomas Haas, Diogo Behrens, Rafael Lourenco de Lima Chehab, Ming Fu, Roland Meyer:
Verifying and Optimizing Compact NUMA-Aware Locks on Weak Memory Models @ arXiv

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Sd

Dartagnan
Checking the Linux Kernel

Dartagnan found qspinlock to be broken (according to LKMM): 
it was racy, failed to provide mutual exclusion, and could deadlock

However: qspinlock runs fine on hardware (TSO, Power, ARMv8, RISCV)
Anarchic semantics

LKMM semantics

Hardware semantics
Buggy behavior

Corrected LKMM semantics

Antonio Paolillo, Hernán Ponce de León, Thomas Haas, Diogo Behrens, Rafael Lourenco de Lima Chehab, Ming Fu, Roland Meyer:
Verifying and Optimizing Compact NUMA-Aware Locks on Weak Memory Models @ arXiv

https://dblp.org/pid/45/9966.html
https://dblp.org/pid/57/11444.html
https://dblp.org/pid/115/7079.html
https://dblp.org/pid/131/4370.html
https://dblp.org/pid/285/5111.html
https://dblp.org/pid/33/5051.html
https://dblp.org/pid/86/3051.html

Cyclic Proofs for Axiomatic Memory Models

Model Checking Memory Models
Memory Models M1, M2Given:

Question: Is M1 weaker than M2?

Cyclic Proofs for Axiomatic Memory Models

Model Checking Memory Models
Memory Models M1, M2Given:

Question: Is M1 weaker than M2?

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbSC ⟹ acyclic hbTSO)

Cyclic Proofs for Axiomatic Memory Models

Model Checking Memory Models
Memory Models M1, M2Given:

Question: Is M1 weaker than M2?

hb+
TSO ∩ id ⊆ ⊤; (hb+

SC ∩ id);⊤

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbSC ⟹ acyclic hbTSO)

Cyclic Proofs for Axiomatic Memory Models

Model Checking Memory Models
Memory Models M1, M2Given:

Question: Is M1 weaker than M2?

hb+
TSO ∩ id ⊆ ⊤; (hb+

SC ∩ id);⊤

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbSC ⟹ acyclic hbTSO)

‣ KATER tool for a restricted fragment (regular language inclusion)
a | r1 ∪ r2 | r1 . r2 | r*

[Kokologiannakis, 2023]

Cyclic Proofs for Axiomatic Memory Models

Model Checking Memory Models
Memory Models M1, M2Given:

Question: Is M1 weaker than M2?

hb+
TSO ∩ id ⊆ ⊤; (hb+

SC ∩ id);⊤

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbSC ⟹ acyclic hbTSO)

‣ KATER tool for a restricted fragment (regular language inclusion)
a | r1 ∪ r2 | r1 . r2 | r*

[Kokologiannakis, 2023]

‣ Our tool supports the regular fragment (based on cyclic proofs)
. . . | r1 ∩ r2 | r−1 | s1 × s2

Cyclic Proofs for Axiomatic Memory Models

Model Checking Memory Models
Memory Models M1, M2Given:

Question: Is M1 weaker than M2?

hb+
TSO ∩ id ⊆ ⊤; (hb+

SC ∩ id);⊤

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbSC ⟹ acyclic hbTSO)

‣ KATER tool for a restricted fragment (regular language inclusion)
a | r1 ∪ r2 | r1 . r2 | r*

[Kokologiannakis, 2023]

‣ Our tool supports the regular fragment (based on cyclic proofs)
. . . | r1 ∩ r2 | r−1 | s1 × s2

MM like LKMM are in this fragment!

Cyclic Proofs for Axiomatic Memory Models

Model Checking Memory Models
Memory Models M1, M2Given:

Question: Is M1 weaker than M2?

hb+
TSO ∩ id ⊆ ⊤; (hb+

SC ∩ id);⊤

Approach: Check inclusion between relational algebra expressions

Example: TSO is weaker than SC (acyclic hbSC ⟹ acyclic hbTSO)

‣ KATER tool for a restricted fragment (regular language inclusion)
a | r1 ∪ r2 | r1 . r2 | r*

[Kokologiannakis, 2023]

‣ Our tool supports the regular fragment (based on cyclic proofs)
. . . | r1 ∩ r2 | r−1 | s1 × s2

MM like LKMM are in this fragment!

Relational ,
cycle somewhere!

⊤

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id
(*)

0 ¬po; po; (po; po)*
¬po; (po; po)*

¬id
0 1

po; po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(W)
0 ¬id

(*)

0 ¬po; po; (po; po)*
¬po; (po; po)*

¬id
0 1

po; po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(W)
0 ¬id

(*)

0 ¬po; po; (po; po)*
¬po; (po; po)*

¬id
0 1

po; po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2po

(a)

(a)

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(W)
0 ¬id

(*)

0 ¬po; po; (po; po)*
¬po; (po; po)*

¬id
0 1

po; po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(¬a)

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2
po

¬po; (po; po)*
¬(po; po)*

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2po

(a)

(a)

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(W)
0 ¬id

(*)

0 ¬po; po; (po; po)*
¬po; (po; po)*

¬id
0 1

po; po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(¬a)

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2
po

¬po; (po; po)*
¬(po; po)*

(W)

1

po*2

¬po; (po; po)*
¬(po; po)*

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2po

(a)

(a)

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(W)
0 ¬id

(*)

0 ¬po; po; (po; po)*
¬po; (po; po)*

¬id
0 1

po; po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(¬a)

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2
po

¬po; (po; po)*
¬(po; po)*

(W)

1

po*2

¬po; (po; po)*
¬(po; po)*

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2po

(a)

(a)

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System
a proof tries to find a counterexamplepo* ⊆ po; (po; po)* ∪ (po; po)*

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

To prove

(¬ ∪)

0 1
po*

¬(po; po)*
¬po; (po; po)*

(¬ *)

0 1
po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(W)
0 ¬id

(*)

0 ¬po; po; (po; po)*
¬po; (po; po)*

¬id
0 1

po; po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

(¬a)

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2
po

¬po; (po; po)*
¬(po; po)*

(W)

1

po*2

¬po; (po; po)*
¬(po; po)*

0 1

po*

¬po; po; (po; po)*
¬po; (po; po)*

¬id

2po

(a)

(a)

progressing

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

‣ Graphs = represented by relational algebra expressions + event symbols

= 0; po* ∩ 1
¬[0; [po; (po; po)* ∪ (po; po)*] ∩ 1]

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System

‣ Proof system is sound + complete for relational algebra inclusions

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

‣ Graphs = represented by relational algebra expressions + event symbols

= 0; po* ∩ 1
¬[0; [po; (po; po)* ∪ (po; po)*] ∩ 1]

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System

‣ Proof system is sound + complete for relational algebra inclusions

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

‣ Graphs = represented by relational algebra expressions + event symbols

= 0; po* ∩ 1
¬[0; [po; (po; po)* ∪ (po; po)*] ∩ 1]

Bound number of
events symbols

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System

‣ Proof system is sound + complete for relational algebra inclusions

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

‣ Graphs = represented by relational algebra expressions + event symbols

= 0; po* ∩ 1
¬[0; [po; (po; po)* ∪ (po; po)*] ∩ 1]

Bound number of
events symbols

0 1

0 1
r (CUT)

0 1
¬r

CUT rule

Cyclic Proofs for Axiomatic Memory Models

Cyclic Proof System

‣ Proof system is sound + complete for relational algebra inclusions

➡ Naive proof search is inefficient (EXPSPACE-complete)

0 1
po*

¬[po; (po; po)* ∪ (po; po)*]

‣ Graphs = represented by relational algebra expressions + event symbols

= 0; po* ∩ 1
¬[0; [po; (po; po)* ∪ (po; po)*] ∩ 1]

Bound number of
events symbols

0 1

0 1
r (CUT)

0 1
¬r

CUT rule

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found?

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found? Property
satisfied

Yes

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found?

Analyze
counterexample

candidate

Is spurious?

Property
satisfied

Yes

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found?

Property
violated

No

Analyze
counterexample

candidate

Is spurious?

Property
satisfied

Yes

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found?

Backtrack search
- Apply CUT

- Apply assumption

Yes Property
violated

No

Analyze
counterexample

candidate

Is spurious?

Property
satisfied

Yes

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found?

Backtrack search
- Apply CUT

- Apply assumption

Yes Property
violated

No

Analyze
counterexample

candidate

Is spurious?

Property
satisfied

Yes

x = 1

fence rf

r1 = x

po

SC

TSO

Problem: checking inclusions in
relational algebra is not sufficient
hb+

TSO ∩ id ⊆ ⊤; (hb+
SC ∩ id);⊤

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found?

Backtrack search
- Apply CUT

- Apply assumption

Yes Property
violated

No

Analyze
counterexample

candidate

Is spurious?

Property
satisfied

Yes

Solution: use assumptions to
restrict graphs to executions

fence ⊆ po
po+ ⊆ po

rf; rf−1 ⊆ id

x = 1

fence rf

r1 = x

po

SC

TSO

Problem: checking inclusions in
relational algebra is not sufficient
hb+

TSO ∩ id ⊆ ⊤; (hb+
SC ∩ id);⊤

Cyclic Proofs for Axiomatic Memory Models

CEGAR Proof Search

Search proof
- no CUTs

- no assumptions

Proof found?

Backtrack search
- Apply CUT

- Apply assumption

Yes Property
violated

No

Analyze
counterexample

candidate

Is spurious?

Property
satisfied

Yes

Solution: use assumptions to
restrict graphs to executions

fence ⊆ po
po+ ⊆ po

rf; rf−1 ⊆ id

x = 1

fence rf

r1 = x

po

SC

TSO

Problem: checking inclusions in
relational algebra is not sufficient
hb+

TSO ∩ id ⊆ ⊤; (hb+
SC ∩ id);⊤

Cyclic Proofs for Axiomatic Memory Models

Evaluation
Comparison with KATER

Cyclic Proofs for Axiomatic Memory Models

Evaluation

‣ Kater outperforms our tool

Comparison with KATER

Cyclic Proofs for Axiomatic Memory Models

Evaluation

‣ Kater outperforms our tool

‣ Our tool supports complex CAT
features (intersections, converses)

Comparison with KATER

Cyclic Proofs for Axiomatic Memory Models

Evaluation

‣ Kater outperforms our tool

‣ Our tool supports complex CAT
features (intersections, converses)

Comparison with KATER Successful applications

Cyclic Proofs for Axiomatic Memory Models

Evaluation

‣ Analyzed MCA and OOTA for different MM‣ Kater outperforms our tool

‣ Our tool supports complex CAT
features (intersections, converses)

Comparison with KATER Successful applications

Cyclic Proofs for Axiomatic Memory Models

Evaluation

‣ Analyzed MCA and OOTA for different MM

‣ Identification of (known) LKMM bugs
‣ Kater outperforms our tool

‣ Our tool supports complex CAT
features (intersections, converses)

Comparison with KATER Successful applications

Cyclic Proofs for Axiomatic Memory Models

Evaluation

‣ Analyzed MCA and OOTA for different MM

‣ Identification of (known) LKMM bugs

‣ Generation of useful counterexamples

‣ Kater outperforms our tool

‣ Our tool supports complex CAT
features (intersections, converses)

Comparison with KATER Successful applications

Cyclic Proofs for Axiomatic Memory Models

Conclusion

Cyclic Proofs for Axiomatic Memory Models

Conclusion
‣ Memory Models need verification

Cyclic Proofs for Axiomatic Memory Models

Conclusion
‣ Memory Models need verification

‣ This can be achieved by checking inclusions in relational algebra

Cyclic Proofs for Axiomatic Memory Models

Conclusion
‣ Memory Models need verification

‣ This can be achieved by checking inclusions in relational algebra

‣ We provided a sound & complete proof system for relational algebra inclusions

Cyclic Proofs for Axiomatic Memory Models

Conclusion
‣ Memory Models need verification

‣ This can be achieved by checking inclusions in relational algebra

‣ We provided a sound & complete proof system for relational algebra inclusions

‣ We presented a CEGAR approach for an efficient proof search

Recent Decidability Results in Verification

Recent Decidability Results in Verification

Hard Problems in Verification
Complexity of VASS Reachability

Decidability of Regular Separability for VASS Reachability Languages 

Decidability of PVASS Reachability 

Decidability of BVASS Reachability 

Decidability of DataVASS Reachability 

Complexity of Parity Games

Hard Problems in Verification
Complexity of VASS Reachability

Decidability of Regular Separability for VASS 

Decidability of PVASS Reachability 

Decidability of BVASS Reachability 

Decidability of DataVASS Reachability 

Complexity of Parity Games

[solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

Hard Problems in Verification
Complexity of VASS Reachability

Decidability of Regular Separability for VASS 

Decidability of PVASS Reachability 

Decidability of BVASS Reachability 

Decidability of DataVASS Reachability 

Complexity of Parity Games

[solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

[solved by us, with E. Keskin, LICS’24]

Hard Problems in Verification
Complexity of VASS Reachability

Decidability of Regular Separability for VASS 

Decidability of PVASS Reachability 

Decidability of BVASS Reachability 

Decidability of DataVASS Reachability 

Complexity of Parity Games

[solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

[solved by us, with E. Keskin, LICS’24]

[solved by us, with E. Keskin and R. Guttenberg, under submission]

Hard Problems in Verification
Complexity of VASS Reachability

Decidability of Regular Separability for VASS 

Decidability of PVASS Reachability 

Decidability of BVASS Reachability 

Decidability of DataVASS Reachability 

Complexity of Parity Games

[solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

[solved by us, with E. Keskin, LICS’24]

[solved by us, with E. Keskin and R. Guttenberg, under submission]

[working on it, with J. Grünke]

Hard Problems in Verification
Complexity of VASS Reachability

Decidability of Regular Separability for VASS 

Decidability of PVASS Reachability 

Decidability of BVASS Reachability 

Decidability of DataVASS Reachability 

Complexity of Parity Games

[solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

[solved by us, with E. Keskin, LICS’24]

[solved by us, with E. Keskin and R. Guttenberg, under submission]

[working on it, with J. Grünke]

[working on it, with E. Keskin]

Hard Problems in Verification
Complexity of VASS Reachability

Decidability of Regular Separability for VASS 

Decidability of PVASS Reachability 

Decidability of BVASS Reachability 

Decidability of DataVASS Reachability 

Complexity of Parity Games

[solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

[solved by us, with E. Keskin, LICS’24]

[solved by us, with E. Keskin and R. Guttenberg, under submission]

[working on it, with J. Grünke]

[working on it, with E. Keskin]

Regular Separability of
VASS Reachability Languages

Eren Keskin, Roland Meyer: On the separability problem
of VASS reachability languages @ LICS24

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html

Regular Separability

.𝕏 ∈ {ℤ, ℕ}

Regular Separability

.𝕏 ∈ {ℤ, ℕ}

-REGSEP: 
Given: Initialized VASS and over . 
Question: Does hold?

𝕏
V1 V2 Σ

L𝕏(V1) ∣ L𝕏(V2)

Regular Separability

.𝕏 ∈ {ℤ, ℕ}

-REGSEP: 
Given: Initialized VASS and over . 
Question: Does hold?

𝕏
V1 V2 Σ

L𝕏(V1) ∣ L𝕏(V2)

Regular Separability
Reachability languages.

.𝕏 ∈ {ℤ, ℕ}

-REGSEP: 
Given: Initialized VASS and over . 
Question: Does hold?

𝕏
V1 V2 Σ

L𝕏(V1) ∣ L𝕏(V2)

: 
 regular.

L1 ∣ L2
∃R ⊆ Σ* L1 ⊆ R ∧ R ∩ L2 = ∅ .

Regular Separability
Reachability languages.

.𝕏 ∈ {ℤ, ℕ}

-REGSEP: 
Given: Initialized VASS and over . 
Question: Does hold?

𝕏
V1 V2 Σ

L𝕏(V1) ∣ L𝕏(V2)

: 
 regular.

L1 ∣ L2
∃R ⊆ Σ* L1 ⊆ R ∧ R ∩ L2 = ∅ .

Regular Separability
Reachability languages.

.𝕏 ∈ {ℤ, ℕ}

-REGSEP: 
Given: Initialized VASS and over . 
Question: Does hold?

𝕏
V1 V2 Σ

L𝕏(V1) ∣ L𝕏(V2)

: 
 regular.

L1 ∣ L2
∃R ⊆ Σ* L1 ⊆ R ∧ R ∩ L2 = ∅ .

Regular Separability

vs.

Reachability languages.

Regular Separability

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

2. {an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

2. {an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

No! Assume and has states. 
Consider

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

2. {an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

No! Assume and has states. 
Consider

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

2. {an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

No! Assume and has states. 
Consider

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

2. {an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

No! Assume and has states. 
Consider

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .

Discussion: 
Separability tries to understand the gap between languages.

Regular Separability
Example: 
1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even Odd.Odd. ∪

2. {an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

No! Assume and has states. 
Consider

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .

Discussion: 
Separability tries to understand the gap between languages.

Insight: 
Modulo seems to play an important role!

Regular Separability

Regular Separability

 
Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]: 

-REGSEP is decidable.ℤ

Regular Separability

 
Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]: 

-REGSEP is decidable.ℤ

Regular Separability

 
Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]: 

-REGSEP is decidable.ℤ

Theorem [LICS’24]: 
-REGSEP is decidable.ℕ

VASS Reachability

Deciding Reachability

Deciding Reachability
Approximations:

Deciding Reachability
Approximations:

Coverability graphs: 
Good: Can keep counters non-negative. 
Bad: Cannot guarantee precise counter values.

Deciding Reachability
Approximations:

Coverability graphs: 
Good: Can keep counters non-negative. 
Bad: Cannot guarantee precise counter values.

Marking Equation: 
Good: Can guarantee precise counter values. 
Bad: Cannot keep counters non-negative.

Deciding Reachability
Approximations:

Coverability graphs: 
Good: Can keep counters non-negative. 
Bad: Cannot guarantee precise counter values.

Marking Equation: 
Good: Can guarantee precise counter values. 
Bad: Cannot keep counters non-negative.

Solution: 
Combine the two.

Deciding Reachability

Deciding Reachability

Challenge: 
Coverability graphs need pumping to guarantee non-negativity.  
Pumping has to respect the marking equation.

Deciding Reachability

Challenge: 
Coverability graphs need pumping to guarantee non-negativity.  
Pumping has to respect the marking equation.

Solution:  
Only pump where the solution space is unbounded.

Deciding Reachability

Challenge: 
Coverability graphs need pumping to guarantee non-negativity.  
Pumping has to respect the marking equation.

Solution:  
Only pump where the solution space is unbounded.

(0,0) (0,1) (0,ω)
σ

Deciding Reachability

Challenge: 
Coverability graphs need pumping to guarantee non-negativity.  
Pumping has to respect the marking equation.

Solution:  
Only pump where the solution space is unbounded.

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Deciding Reachability

Deciding Reachability
Lemma: 
Consider over and variable x[i].A ⋅ x = b ℕk

Deciding Reachability
Lemma: 
Consider over and variable x[i].A ⋅ x = b ℕk

x[i] is unbounded in  

sol(A ⋅ x = b)
⇔ ∃s ∈ sol(A ⋅ x = 0) . s(x[i]) > 0.

Deciding Reachability
Lemma: 
Consider over and variable x[i].A ⋅ x = b ℕk

x[i] is unbounded in  

sol(A ⋅ x = b)
⇔ ∃s ∈ sol(A ⋅ x = 0) . s(x[i]) > 0.

Support = the set of unbounded variables.

Deciding Reachability
Lemma: 
Consider over and variable x[i].A ⋅ x = b ℕk

x[i] is unbounded in  

sol(A ⋅ x = b)
⇔ ∃s ∈ sol(A ⋅ x = 0) . s(x[i]) > 0.

Support = the set of unbounded variables.

Support solution =  
 giving a positive value to all variables in the support.s ∈ sol(A ⋅ x = 0)

Deciding Reachability
Lemma: 
Consider over and variable x[i].A ⋅ x = b ℕk

x[i] is unbounded in  

sol(A ⋅ x = b)
⇔ ∃s ∈ sol(A ⋅ x = 0) . s(x[i]) > 0.

Support = the set of unbounded variables.

Support solution =  
 giving a positive value to all variables in the support.s ∈ sol(A ⋅ x = 0)

Note: Homogeneous solutions are stable under addition.

Deciding Reachability

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Deciding Reachability

So far: 
Pumping where the solution space is unbounded  
 = pumping should yield a support solution.

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Deciding Reachability

So far: 
Pumping where the solution space is unbounded  
 = pumping should yield a support solution.

Problem: 
 may not match a support solution .σ s

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Deciding Reachability

So far: 
Pumping where the solution space is unbounded  
 = pumping should yield a support solution.

Problem: 
 may not match a support solution .σ s

Idea: 
Turn into a path.s − ψ(σ)

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Deciding Reachability

So far: 
Pumping where the solution space is unbounded  
 = pumping should yield a support solution.

Problem: 
 may not match a support solution .σ s

Idea: 
Turn into a path.s − ψ(σ)

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Parikh image.

Deciding Reachability

Deciding Reachability
Lemma (Euler-Kirchhoff): 
Let be a strongly connected directed graph. 
Let satisfy

G = (V, E)
x : ℕE

Deciding Reachability
Lemma (Euler-Kirchhoff): 
Let be a strongly connected directed graph. 
Let satisfy

G = (V, E)
x : ℕE

∑
e=(−,v)

x[e] = ∑
e=(v,−)

x[e] ∀v ∈ V

x ≥ 1

Deciding Reachability
Lemma (Euler-Kirchhoff): 
Let be a strongly connected directed graph. 
Let satisfy

G = (V, E)
x : ℕE

∑
e=(−,v)

x[e] = ∑
e=(v,−)

x[e] ∀v ∈ V

x ≥ 1

Then there is a cycle in with . 
Also write .

c G ψ(c) = x
c = ⟨x⟩

Deciding Reachability
Lemma (Euler-Kirchhoff): 
Let be a strongly connected directed graph. 
Let satisfy

G = (V, E)
x : ℕE

∑
e=(−,v)

x[e] = ∑
e=(v,−)

x[e] ∀v ∈ V

x ≥ 1

Then there is a cycle in with . 
Also write .

c G ψ(c) = x
c = ⟨x⟩

Realization.

Deciding Reachability

Pumping should yield a support solution:

Deciding Reachability

Pumping should yield a support solution:

Let be a support solution withs

Deciding Reachability

Pumping should yield a support solution:

Let be a support solution withs

 d := s − ψ(up) − ψ(dn) ≥ 1 .

Deciding Reachability

Pumping should yield a support solution:

Let be a support solution withs

 d := s − ψ(up) − ψ(dn) ≥ 1 .

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

Deciding Reachability

Pumping should yield a support solution:

Let be a support solution withs

 d := s − ψ(up) − ψ(dn) ≥ 1 .

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

 .w = ⟨d⟩

Deciding Reachability

Pumping should yield a support solution:

Let be a support solution withs

 d := s − ψ(up) − ψ(dn) ≥ 1 .

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

 .w = ⟨d⟩

Now and we say they match.ψ(up) + ψ(w) + ψ(dn) = s

Deciding Reachability

Deciding Reachability

Lambert’s Iteration Lemma [TCS’92]: 
For large enough, one can even fit in a -cycle  
that reaches the exit from the entry marking:

c ℤ

Deciding Reachability

Lambert’s Iteration Lemma [TCS’92]: 
For large enough, one can even fit in a -cycle  
that reaches the exit from the entry marking:

c ℤ

upc . ρ . wc . dnc .

Deciding Reachability

Lambert’s Iteration Lemma [TCS’92]: 
For large enough, one can even fit in a -cycle  
that reaches the exit from the entry marking:

c ℤ

upc . ρ . wc . dnc .

Since pumping happens in a support solution, this still solves reachability. 
Notably, it stays non-negative.

Deciding Reachability

Deciding Reachability

Problem: Precovering graphs may not be perfect.

Deciding Reachability

Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

Deciding Reachability

Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

Deciding Reachability

…
MGTS

Deciding Reachability

Deciding Reachability
Deciding Reachability:

Deciding Reachability
Deciding Reachability:

As long as perfectness fails, decomposition is guaranteed to succeed.

Deciding Reachability
Deciding Reachability:

As long as perfectness fails, decomposition is guaranteed to succeed.

It yields finite sets of MGTS that are smaller in a well-founded order.

Deciding Reachability
Deciding Reachability:

As long as perfectness fails, decomposition is guaranteed to succeed.

It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

Deciding Reachability
Deciding Reachability:

As long as perfectness fails, decomposition is guaranteed to succeed.

It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS,

Deciding Reachability
Deciding Reachability:

As long as perfectness fails, decomposition is guaranteed to succeed.

It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS,

-reachability holds -reachability holds.ℕ ⇔ ℤ

We are hiring!
Associate Professorship in Verification (tenured, W2)

Please inform your postdocs and colleagues who may be interested!
Please contact me for questions!

