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X =y =0 (a).(b).(c).(d)

(a) x = 1; (c) vy = 1;
(b) rl = y; (d) r2 = x (a).(c).(b).(d)
(a).(c).(d).(b)
(c).(d).(a).(b)
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for the values of r1 and r2?
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Introductory example

(a).(b).(c).(d) rMN=0,r2=1

(a)-(c).(b).(d)

Mn=1,r2=1
(a).(c).(d).(b) » 1=1,r2=1
(©).(d).(a).(b) 1=1,r2=0
(c).(a).(d).(b)
(c).(a).(b).(d)

Mn=1,r2=1
rMn=1,r2=1

...practice says otherwise!
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Store buffering
x86/TSO

CPUs can buffer a store locally and only later flush it into main memory

(I1) x = 0; (I2) v = 0;

V4

Understanding the program semantics requires

PO understanding the memory architecture!
( d ) X =1 ’ —
(b) rl = 0;

This behavior is not captured by an interleaving!
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Memory architectures (sketched)

Store/Load buffer, instruction buffer, decentralised memory
.. and much more

All these memory details affect the program semantics!

Instructiori i Buffer

CP | | CPU
U G+ So we need to model them! —>
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Capturing program semantics

Problems so far

Interleavings are insufficient to capture program behavior

Enrich interleavings with microarchitectural steps (e.g., fetch, execute, write-back)?

\ Requires all details of the memory architecture: too complex too quickly!

Forget about architectural details!
Directly model observable behavior!

Axiomatic program/memory semantics!
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Axiomatic program semantics

Example
(I1) x = 0; (I2) y = 0;
PO / P1
(a) x = 1; (c) v = 1;

Program executions described by labelled graphs
No more interleavings!

No details of the memory architecture!
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Memory consistency models

A memory consistency model answers the following question:
Given an anarchic execution, is it observable?

W(x,1) R(x)=1 (X, 1 «—W(x,2)
(o (le | /e
R(x)=1 W(x,1)

2l

The CAT language is used to formulate memory consistency models

Restrict the shape (events & relations) of executions
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CAT puts constraints on relations, happens-before has to be acyclic

Base relations Derived relations Constraints

— Program order

-—P Coherence order —) Happens-before acyclic ( Happens-before )
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Relation algebra: U, M, \, - o ! L
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Memory consistency models
The CAT language (example)

Base relations Derived relations Constraints

— Program order —P Conflict relation
—P Coherence order —p Happens-before acyclic ( Happens-before )

- Read-from relation

W(x,1)e—W(x,2) r=rmhco  wix,1)e—W(x,2) acyclic (pou fr)

| |/ X

R(x)=2 R(x)=2 Inconsistent
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Memory consistency models
Outlook

Beyond hardware memory architectures!

(A) Language-level memory models (C11, LKMM, Java, ...)
Compiler optimisations + compiler mappings
Library specifications: RCU, pthread, safe memory reclamation, ...
(B) Distributed systems (~ communication protocols)

(C) Databases (~ database isolation levels)
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Model checking real code
C/Linux code (LLVM), Litmus code (x86, RISCV, PPC, ARMvS8, Nvidia PTX)

Can automatically compile C/Linux code to hardware!

Program
2

—_—p

Specification
—_—)

user assertions
liveness
data races

Dartagnan

A Configuration
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Model checking real code

i e vt

Program A
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Relation Analysis for Compact SMT Encodings @ CAVI9
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E ding CAT into logical theon
Thomas Haas, Roland Meyer, Herndn Ponce de Leon: ""
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» CAT has simple operations over relations: ;,U, N, \, o1

— Easily encodable into plain SAT (over finite domain)

 CAT has axioms on relations: empty, irreflexive, acyclic

— Emptiness and irreflexivity encodable into plain SAT;
Acyclicity encodable into integer difference logic (SMT)
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CAT in logical theories

Problem: CAT allows for (non-linear) recursive definitions with
(stratified) least fixed point semantics!

Existing theories have a hard time capturing least fixed point semantics!

\TINYAQQ ON IVraATIAQAVIN/IT\7 NN A TNTA NNIATN AV G
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Memory-model-parametric BMC with CAAT

Base relations only

CAT as theory
Program
EE— SMT solver

Dartagnan
5 | CAT
\/ UNSAT SAT

_
J SAT
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CAT as logical theory SIS ITH ) | agence

let hb = po-tso | (rf & ext) | fr | co

acyclic hb
// more relations & axioms

Derived relations Axioms

‘Base relations
r \\
fr * acyclic
o
ext-
po-

’rf‘l/ /

— — rfe

— —
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CAAT: Consistency as a Theory

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Hidden inside J« e

~Derived ralatinne ‘Axioms

See CAT as logical theory over the base relations!

—

—P>

acyclic
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Theory solving for SC

let fr = rf©™-1;co
let hb = po | rf | fr | co
acyclic hb

1. Derive (Bottom-Up)

2. Check

D

A —————————————————————
3. Explain (Top-Down)
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tet Tr ri=-1;co Coherence: —>
let hb po | rf | fr | co e 3

acyclic hb

l:store(&f, 1); 4:store(&qg, 1);

1 |

2:store(&t, 2); 5:store(&t, 1);

while( while(
3:load(&g) == 6:load(&F) == 1

o |

) 1} 7:load(&t) == 1) {}

0:init (&g, 0)



‘ﬂ Program order: =

let Tr = ri”-1;co Coherence: —>
let hb =po | rf | fr | co :

acyclic hb

l:store(&f, 1); 4:store(&qg, 1);

1 _—

2:store(&t, 2); 5:store(&t, 1);

|

0:init (&g, 0)

while( while(
3:load(&g) == 6:load(&F) == 1
&& && l
load(&t) == 2) {} 7:1load(&t) == 1) {}
" po(12) A po(2.3) A po(4.5) A po(5.6) A po(6.7)
P = A 7£(0,3) A 7(1,6) A 1f(2,7)
: A co(0,4) A co(5,2) ,:
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1l:store(&f, 1); 4:store(&qg, 1);

2:store(&t, 2); — v 5:store(&t, 1);
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\ while( while(

3:load(&g) == 6:load(&F) == 1
&& && l'
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Program order: —p
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Simple CATs: CAAT is barely faster than standard theories
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Very complex CATs: CAAT is up to 100x faster than standard theories




Conclusion

» We see consistency models as a family of theories _gf ﬁ «ﬂ M

» Consistency theories handle least fixed points, unlike existing theories
 We give a general theory solver for consistency theories

* Using CAAT in BMC gives substantial performance improvement



Ongoing Work

* Online integration with the SMT solver

* |ncrementality is a problem — the partial models are often largely different,
because other theories make the solver backtrack!

 Use matching instead!
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Java MM [ULS 1996]
> too weak to build new synchronization primitives [Pugh]

> too strong for common compiler optimizations (i.e. CSE) [Pugh]

The Java Memory Model

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park
College Park, MD

Sarita V. Adve
Department of Computer Science

University of lllinois at Urbana-Champaign

Urbana-Champaign, IL

Fixing the Java Memory Model

William Pugh
Dept. of Computer Science
Univ. of Maryland, College Park
pugh@cs.umd.edu

Abstract

The Java memory model described in Chapter 17 of the
Java Language Specification gives constraints on how
threads interact through memory. The Java memory
model is hard to interpret and poorly understood; it
imposes constraints that prohibit common compiler op-
timizations and are expensive to implement on existing
hardware. At least one shipping optimizing Java com-
piler violates the constraints of the existing Java mem-
ory model. These issues are particularly important for
high-performance Java applications, since they are more
likely to use and need aggressive optimizing compilers
awdl parallel processors.

In addition, programming idioms used by some pro-
grammers and used within Sun’s Java Development Kit
is not guaranteed to be valid according the existing Java
memory model.

This paper reviews these issues and suggests replace-
ment memory models for Java.

1 Introduction

The Java memory model, as described in chapter 17 of
the Java Language Specification [GJS96], is very hard

it does. However, I don’t believe it would be profitable
to spend much time debating whether it does have these
features. I am convinced that the existing style of the
specification will never be clear, and that attempts to
patch the existing specification by adding new rules will
make even harder to understand. If we decide to change
the Java memory model, a completely new description
of the memory model should be devised.

In addition to the problem that the memory model
is very hard to understand, it has two basic problems:
it is too weak and it is too strong. It is too strong
in that it prohibits many compiler optimizations and
requires many memory barriers on architectures such
Sun’s Relaxed Memory Order (RMO). It is too weak in
that much of the code that has been written for Java,
including code in Sun’s JDK, is not guaranteed to be
valid.

2 The Java Memory Model

In this section, I try to interpret JMM, the existing Java
Memory Model, as defined in Chapter 17 of the Java
Language Specification [GJS96]. The same definition
also appears in Chapter 8 of the Java Virtual Machine
Specification [LY96].
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The C/C++11 memory model defines the semantics of concur-
rent memory accesses in C/C++, and in particular supports
racy “atomic” accesses at a range of different consistency
levels, from very weak consistency (“relaxed”) to strong, se-
quential consistency (“SC”). Unfortunately, as we observe in
this paper, the semantics of SC atomic accesses in C/C++11,
as well as in all proposed strengthenings of the semantics, is
flawed, in that (contrary to previously published results) both
suggested compilation schemes to the Power architecture are
unsound. We propose a model, called RC11 (for Repaired
C11), with a better semantics for SC accesses that restores the
soundness of the compilation schemes to Power, maintains
the DRF-SC guarantee, and provides stronger, more useful,
guarantees to SC fences. In addition, we formally prove, for
the first time, the correctness of the proposed stronger compi-
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there are two general types: non-atomic and atomic. Non-
atomic accesses are intended for normal data: races on such
accesses are considered as programming errors and lead to
undefined behavior, thus ensuring that they can be compiled
to plain machine loads and stores and that it is sound to apply
standard sequential optimizations on non-atomic accesses.
In contrast, atomic accesses are specifically intended for
communication between threads: thus, races on atomics are
permitted, but at the cost of introducing hardware fence
instructions during compilation and imposing restrictions
on how such accesses may be merged or reordered.

The degree to which an atomic access may be reordered
with other operations—and more generally, the implemen-
tation cost of an atomic access—depends on its consistency
level, concerning which C11 offers programmers several op-
tions according to their needs. Strongest and most expensive
are sequentially consistent (SC) accesses, whose primary
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Comparison with KATER

Table 1: TooL vs. KATER.

TooL KATER
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PPC—PPC-S — 1.13
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> This can be achieved by checking inclusions in relational algebra
> We provided a sound & complete proof system for relational algebra inclusions

> We presented a CEGAR approach for an efficient proof search



Recent Decidability Results in Verification



Recent Decidability Results in Verification



Hard Problems In Verification

Complexity of VASS Reachability

Decidability of Regular Separability for VASS Reachability Languages
Decidability of PVASS Reachability

Decidability of BVASS Reachability

Decidability of DataVASS Reachabillity

Complexity of Parity Games



Hard Problems In Verification

—Gemp&eeaﬁe%%—ﬂe&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

Decidability of Regular Separability for VASS
Decidability of PVASS Reachability
Decidability of BVASS Reachability
Decidability of DataVASS Reachabillity

Complexity of Parity Games



Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

e T T e TS —_— [solved by us, with E. Keskin, LICS’24]

)¢
@

Decidability of PVASS Reachability
Decidability of BVASS Reachability
Decidability of DataVASS Reachabillity

Complexity of Parity Games



Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

Decidability of BVASS Reachability
Decidability of DataVASS Reachabillity

Complexity of Parity Games

[solved by us, with E. Keskin, LICS’24]

[solved by us, with E. Keskin and R. Guttenberg, under submission]



Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

—etteratetttr— SHTE i S re R 1wl AR A LV Y [solved by us, with E. Keskin, LICS’24]
—Becrd-a'b1+rt'y—of-P’v’79rS-S-Reach-a'b1+rty— [solved by us, with E. Keskin and R. Guttenberg, under submission]
— Decrdabrnty of BYASS Reachability [working on it, with J. Gréinke]

Decidability of DataVASS Reachabillity

Complexity of Parity Games



Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

—etteratetttr— SHTE i S re R 1wl AR A LV Y [solved by us, with E. Keskin, LICS’24]
—Becrd-a'b1+rt'y—of-P’v’79rS-S-Reach-a'b1+rty— [solved by us, with E. Keskin and R. Guttenberg, under submission]
— Decrdabrnty of BYASS Reachability [working on it, with J. Gréinke]

Decidability of DataVASS Reachabillity

—Gemplexity of Parity Games [working on it, with E. Keskin]



Hard Problems In Verification

—Gempbea%y—e%%—F%e&eh&bﬂﬁy— [solved by Czerwinski, Leroux, and Schmitz in 2019 (upper bound) and 2021 (lower bound)]
[LICS’19, FOCS’21 2x]

———— SHTE R [solved by us, with E. Keskin, LICS’24]
—Becrd-a'b1+rt'y—of-P’v’79rS-S-Reach-a'b1+rty— [solved by us, with E. Keskin and R. Guttenberg, under submission]
— Decrdabrnty of BYASS Reachability [working on it, with J. Gréinke]

Decidability of DataVASS Reachabillity

—Gemplexity of Parity Games [working on it, with E. Keskin]



Regular Separability of
VASS Reachablllty Languages



https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html

Regular Separability



Regular Separability

X e {Z,N}.



Regular Separability

X e {Z,N}.

X-REGSEP:
Given: Initialized VASS V| and V, over X .

Question: Does Ly (V) | Ly (V,) hold?



Regular Separability

Reachability languages.

X e {Z,N}.

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Lyx(V,) hold?



Regular Separability

Reachability languages.

X e {Z,N}.

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Lyx(V,) hold?

L, | L
dR C 2*regular. L CRARNL, =Q .



Regular Separability

X = {Z, N} Reachability languages. *

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Ly(V,) hold?

L, | L
dR C 2*regular. L CRARNL, =Q .



Regular Separability

X E {Z, N} Reachability languages. * *

X-REGSEP:
Given: Initialized VAS& V, and V, over X .

Question: Does Ly (V;) | Ly(V,) hold?

VS.

Sk

X

L, | L
dR C 2*regular. L CRARNL, =Q .
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Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

No! Assume A : L, | L, and A has m states. x
Consider a1 . p"*! L, CLA) . 6

Discussion:
Separability tries to understand the gap between languages.

Insight:
Modulo seems to play an important role!
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Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]:
/ -REGSEP is decidable.

Theorem [LICS’24]:
N-REGSEP is decidable.
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Deciding Reachability

Approximations:

Coverability graphs:
Good: Can keep counters non-negative.
Bad: Cannot guarantee precise counter values.

Marking Equation;
Good: Can guarantee precise counter values.
Bad: Cannot keep counters non-negative.

Solution:
Combine the two.
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Challenge:
Coverability graphs need pumping to guarantee non-negativity.
Pumping has to respect the marking equation.

Solution:
Only pump where the solution space is unbounded.
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Lemma:
Consider A - x = b over N* and variable X[i].

x[i] is unbounded in sol(A - x = b)
< ds e sol(A-x=0). s(x[i]) > O.

Support = the set of unbounded variables.

Support solution =
s € sol(A - x = 0) giving a positive value to all variables in the support.

Note: Homogeneous solutions are stable under addition.
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e” S~

, . XleJwithe € have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.

So far:
Pumping where the solution space is unbounded
= pumping should yield a support solution.

Problem:;
o may not match a support solution s. Parikh image.

ldea: |
Turn s — w(o) into a path.
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Lemma (Euler-Kirchhoff):
Let G = (V, E) be a strongly connected directed graph.

Let x : N satisfy

2 xle] = Z x[e] VvevV

e:(—,V) €:(V,—)

x> 1

Then there is a cycle ¢ in G with y(c) = x.

Also write ¢ = (x).
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Pumping should yield a support solution:
Let s be a support solution with

d.=s—w(up)—wdn) > 1.

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle
w=(d) .

Now w(up) + w(w) + w(dn) = s and we say they match.
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Lambert’s lteration Lemma [TCS’92]:

For ¢ large enough, one can even fit in a Z-cycle
that reaches the exit from the entry marking:

upc.p.w.dn .

Since pumping happens in a support solution, this still solves reachability.
Notably, it stays non-negative.
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Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

MGTS .,1.‘0. ,1.%. ,1.%.
¢

Yo—¢ Yo— ¢ %o
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Deciding Reachabillity:
As long as perfectness fails, decomposition is guaranteed to succeed.
It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS,

N-reachability holds < Z-reachability holds.
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We are hiring!

Associate Professorship in Verification (tenured, W2)

Please inform your postdocs and colleagues who may be interested!
Please contact me for questions!



