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CPUs can buffer a store locally and only later flush it into main memory
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This behavior is not captured by an interleaving!

Understanding the program semantics requires 
understanding the memory architecture!
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Memory architectures (sketched)
Store/Load buffer, instruction buffer, decentralised memory

Store/Load BufferStore/Load Buffer

CPU CPU

Memory Memory
Instruction Buffer Instruction Buffer

… and much more

All these memory details affect the program semantics!

So we need to model them!
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Axiomatic program/memory semantics!
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Axiomatic program semantics
Example

(a) x = 1; 

(b) r1 = 0;

(c) y = 1; 

(d) r2 = 0;

P0 P1

(I1) x = 0; (I2) y = 0;

Program executions described by labelled graphs

No more interleavings!

No details of the memory architecture!
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The CAT language is used to formulate memory consistency models

Restrict the shape (events & relations) of executions
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Read-from relation
…
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…
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Happens-before
Atomicity violation
…

Base relations Derived relations Constraints

acyclic ( po    fr )W(x,1) 

R(x)=2

W(x,2) fr  = rf-1  co; W(x,1) 

R(x)=2

W(x,2) ∪

Inconsistent

Memory consistency models



Memory consistency models
Outlook



Memory consistency models
Outlook

Beyond hardware memory architectures!



Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)



Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings



Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings

 Library specifications: RCU, pthread, safe memory reclamation, …



Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings

 Library specifications: RCU, pthread, safe memory reclamation, …

 (B) Distributed systems (~ communication protocols)



Memory consistency models
Outlook

Beyond hardware memory architectures!

 (A) Language-level memory models (C11, LKMM, Java, …)

 Compiler optimisations + compiler mappings

 Library specifications: RCU, pthread, safe memory reclamation, …

 (B) Distributed systems (~ communication protocols)

 (C) Databases (~ database isolation levels)
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Internals

Program

CAT

Dartagnan

Specification

Configuration ?
(Bounded safety)

Program 
transformations

Static analyses

SMT solving

Alias Analysis 
Control-Flow Analysis (find basic blocks of instructions executed together, control-flow variables) 

Constant Propagation 
Def-Use-Analysis 

Dominator Analysis 
Expression Simplification 

Function Call Devirtualization (resolve call targets) 
Function Inlining 

Live Variables 
Loop Unrolling 

Mem2Reg (treat stack as registers) 
Normalize Loops (single backjump, single entry) 

Reaching Definitions 
Sparse Conditional Constant Propagation (constant propagation + dead code elimination) 

Spin Loop Detection and Instrumentation for Dynamic Detection 
Symmetry Breaking
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 Easily encodable into plain SAT (over finite domain) 

 
 

; , ∪ , ∩ , ∖, ∙−1

→

• CAT has axioms on relations: empty, irreflexive, acyclic 
 

 Emptiness and irreflexivity encodable into plain SAT; 
Acyclicity encodable into integer difference logic (SMT)
→

Problem: CAT allows for (non-linear) recursive definitions with 
(stratified) least fixed point semantics!

Existing theories have a hard time capturing least fixed point semantics!TSO



Dartagnan
Memory-model-parametric BMC

Program

CAT

φ ∧ φ ∧ φ
Dartagnan

SMT solver

𝒯𝖲𝖠𝖳
𝒯𝖫𝖨𝖠

𝒯𝖡𝖵

𝒯𝖨𝖣𝖫 𝒯…

UNSAT SAT

Eager encoding using standard theories



Dartagnan + CAAT
Memory-model-parametric BMC with CAAT

Program

CAT

φ ∧ φ ∧ φ
Dartagnan

SMT solver

𝒯𝖲𝖠𝖳
𝒯𝖫𝖨𝖠

𝒯𝖡𝖵

𝒯𝖨𝖣𝖫 𝒯…

UNSAT SAT

Base relations only

CAT as theory



CAT as logical theory

rf

po

co

…

fr
hb

po-tso

rf−1
acyclic

…
…

ext
rfe

Base relations Derived relations Axioms

let fr = rf^-1;co 
let po-tso = (po \ WxR) | mfence 
let hb = po-tso | (rf & ext) | fr | co 
acyclic hb 
// more relations & axioms 

TSO



CAAT: Consistency as a Theory

b1

b3

b0

…

d1 d3

d4

d0

acyclic

…
…

b2
d2

AxiomsBase relations Derived relations

Hidden inside 𝒯𝒯



CAAT: Consistency as a Theory

b1

b3

b0

…

d1 d3

d4

d0

acyclic

…
…

b2
d2

AxiomsBase relations Derived relations

Hidden inside 𝒯𝒯

See CAT as logical theory over the base relations!TSO



How does it work?



Theory solving for SC
let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC

φ



Theory solving for SC

rf

po

co

Base relations

φ

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



Theory solving for SC

rf

po

co
fr

hbrf−1

Base relations Derived relations

1. Derive (Bottom-Up)

φ

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



Theory solving for SC

rf

po

co
fr

hbrf−1
acyclic

Base relations Derived relations Axioms

1. Derive (Bottom-Up)

2. Check

φ

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



Theory solving for SC

rf

po

co
fr

hbrf−1
acyclic

Base relations Derived relations Axioms

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



Theory solving for SC

rf

po

co
fr

hbrf−1

Base relations Derived relations

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



Theory solving for SC

rf

po

co

Base relations

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



Theory solving for SC

rf

po

co

Base relations

1. Derive (Bottom-Up)

2. Check

3. Explain (Top-Down)

φ

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC

Expl.



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

Program order: 

0:init(&g, 0)

Read-from: 
Coherence: let fr = rf^-1;co 

let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

Program order: 

0:init(&g, 0)

Read-from: 
Coherence: 

po(1,2) ∧ po(2,3) ∧ po(4,5) ∧ po(5,6) ∧ po(6,7)

∧ rf(0,3) ∧ rf(1,6) ∧ rf(2,7)

∧ co(0,4) ∧ co(5,2)

φ =

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

Program order: 

0:init(&g, 0)

Read-from: 
Coherence: 

1. Derive (Bottom-Up)

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

Program order: 

0:init(&g, 0)

Read-from: 
Coherence: 

1. Derive (Bottom-Up)

From-read: 

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 
From-read: 

Happens-before: 

1. Derive (Bottom-Up)

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 
From-read: 

Happens-before: 

2. Check

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 
From-read: 

Happens-before: 

2. Check

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 
From-read: 

Happens-before: 

3. Explain (Top-Down)

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 
From-read: 

3. Explain (Top-Down)

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 

3. Explain (Top-Down)

let fr = rf^-1;co 
let hb = po | rf | fr | co 
acyclic hb

SC



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 

3. Explain (Top-Down)

po(1,2) ∧ po(2,3) ∧ po(4,5) ∧ po(5,6) ∧ po(6,7)

∧ rf(0,3) ∧ rf(1,6) ∧ rf(2,7)

∧ co(0,4) ∧ co(5,2)

= φ
po(2,3) ∧ po(4,5)

∧ rf(0,3)

∧ co(0,4) ∧ co(5,2)
⊑



  1:store(&f, 1); 

  2:store(&t, 2); 

    while( 
3:load(&g) == 1 

    && 

    load(&t) == 2) {} 
   

    4:store(&g, 1); 

    5:store(&t, 1); 

    while( 
    6:load(&f) == 1  

    && 

    7:load(&t) == 1) {} 

0:init(&g, 0)

Program order: 
Read-from: 
Coherence: 

3. Explain (Top-Down)

po(1,2) ∧ po(2,3) ∧ po(4,5) ∧ po(5,6) ∧ po(6,7)

∧ rf(0,3) ∧ rf(1,6) ∧ rf(2,7)

∧ co(0,4) ∧ co(5,2)

= φ
po(2,3) ∧ po(4,5)

∧ rf(0,3)

∧ co(0,4) ∧ co(5,2)
⊑

Explanation:    𝒯SC ⊧ ¬(po(2,3) ∧ po(4,5) ∧ rf(0,3) ∧ co(0,4) ∧ co(5,2))TSO



A Theory Solver for Consistency

Derive

Check

Explain

inconsistent

sat

φconj.

explanation

Theory Solver𝒯



A Decision Procedure for Consistency

Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

inconsistent

explanation



A Decision Procedure for Consistency

Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

inconsistent

explanation

≈

model of ψ



Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

A Decision Procedure for Consistency

inconsistent

explanation

≈

model of ψ



Derive

Check

Explain

sat

φconj.

SAT Solver

Lazy SMT

(un)sat

ψ

Theory Solver𝒯

Add explanation, 
generate new model 

& repeat

A Decision Procedure for Consistency

inconsistent

explanation

≈

model of ψ



Evaluation



Evaluation: simple CATs
No recursion



Evaluation: simple CATs

Simple CATs: CAAT is barely faster than standard theories

No recursion



Evaluation: complex CATs
Linear recursion



Evaluation: complex CATs

Complex CATs: CAAT is 2-20x faster than standard theories

Linear recursion
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Evaluation: very complex CATs
Non-linear recursion

Very complex CATs: CAAT is up to 100x faster than standard theories



Conclusion

• We see consistency models as a family of theories  

• Consistency theories handle least fixed points, unlike existing theories 

• We give a general theory solver for consistency theories 

• Using CAAT in BMC gives substantial performance improvement



Ongoing Work

• Online integration with the SMT solver


• Incrementality is a problem — the partial models are often largely different, 
because other theories make the solver backtrack! 


• Use matching instead!



Cyclic Proofs for  
Axiomatic Memory Models

ongoing work with Jan Grünke and Thomas Haas
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The Java Memory Model

Fixing the Java Memory Model

• Java MM


‣ too weak to build new synchronization primitives


‣ too strong for common compiler optimizations (i.e. CSE)

[JLS 1996]

[Pugh]

[Pugh]

• C/C++11 MM


‣ common compiler optimizations are invalid


‣ allows strange behavior (i.e. OOTA) 


‣ SC fences are too weak


‣ unsound compilation schemes to POWER 

[Vafeiadis et. al]

[Sarkar et. al]

[Lahav et. al]

[Vafeiadis et. al]

➡ Need for automatic Memory Model verification!
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cycle somewhere!

⊤
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Evaluation

‣ Analyzed MCA and OOTA for different MM

‣ Identification of (known) LKMM bugs

‣ Generation of useful counterexamples

‣ Kater outperforms our tool

‣ Our tool supports complex CAT 
features (intersections, converses)

Comparison with KATER Successful applications
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Conclusion
‣ Memory Models need verification

‣ This can be achieved by checking inclusions in relational algebra

‣ We provided a sound & complete proof system for relational algebra inclusions

‣ We presented a CEGAR approach for an efficient proof search 
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Regular Separability of  
VASS Reachability Languages

Eren Keskin, Roland Meyer: On the separability problem
of VASS reachability languages @ LICS24

https://dblp.org/pid/115/7079.html
https://dblp.org/pid/86/3051.html
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1. {an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

Yes! Separator: Even.Even  Odd.Odd. ∪

2. {an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

No! Assume  and  has  states. 
Consider 

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .

Discussion: 
Separability tries to understand the gap between languages.

Insight: 
Modulo seems to play an important role!
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Theorem [LICS’24]: 
-REGSEP is decidable.ℕ
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Approximations: 

Coverability graphs: 
Good: Can keep counters non-negative. 
Bad: Cannot guarantee precise counter values. 

Marking Equation: 
Good: Can guarantee precise counter values. 
Bad: Cannot keep counters non-negative. 

Solution: 
Combine the two.
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Challenge: 
Coverability graphs need pumping to guarantee non-negativity.  
Pumping has to respect the marking equation. 

Solution:  
Only pump where the solution space is unbounded.

(0,0) (0,1) (0,ω)
σ ⇒  with x[e] e ∈ σ

 with j = 2x[ j]
have to be unbounded 
in the solution space. 
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Lemma: 
Consider   over  and variable x[i].A ⋅ x = b ℕk

x[i] is unbounded in   
                                        

sol(A ⋅ x = b)
⇔ ∃s ∈ sol(A ⋅ x = 0) . s(x[i]) > 0.

Support  =  the set of unbounded variables.

Support solution  =   
        giving a positive value to all variables in the support.s ∈ sol(A ⋅ x = 0)

Note: Homogeneous solutions are stable under addition. 
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So far: 
Pumping where the solution space is unbounded  
                                                      = pumping should yield a support solution.

Problem: 
 may not match a support solution .σ s

Idea: 
Turn  into a path.s − ψ(σ)

(0,0) (0,1) (0,ω)
σ ⇒  with x[e] e ∈ σ

 with j = 2x[ j]
have to be unbounded 
in the solution space. 

Parikh image.
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Deciding Reachability
Lemma (Euler-Kirchhoff): 
Let  be a strongly connected directed graph. 
Let  satisfy

G = (V, E)
x : ℕE

∑
e=(−,v)

x[e] = ∑
e=(v,−)

x[e] ∀v ∈ V

x ≥ 1

Then there is a cycle  in  with . 
Also write .

c G ψ(c) = x
c = ⟨x⟩

Realization.
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Pumping should yield a support solution:

Let  be a support solution withs

 d := s − ψ(up) − ψ(dn) ≥ 1 .

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

 .w = ⟨d⟩
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Pumping should yield a support solution:

Let  be a support solution withs

 d := s − ψ(up) − ψ(dn) ≥ 1 .

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

 .w = ⟨d⟩

Now  and we say they match.ψ(up) + ψ(w) + ψ(dn) = s
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Lambert’s Iteration Lemma [TCS’92]: 
For  large enough, one can even fit in a -cycle  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Lambert’s Iteration Lemma [TCS’92]: 
For  large enough, one can even fit in a -cycle  
that reaches the exit from the entry marking: 

c ℤ

upc . ρ . wc . dnc .

Since pumping happens in a support solution, this still solves reachability. 
Notably, it stays non-negative.
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Deciding Reachability: 

As long as perfectness fails, decomposition is guaranteed to succeed.

It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS, 

-reachability holds        -reachability holds.ℕ ⇔ ℤ
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