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Context

TLA+: language for specifying (distributed) algorithms

▶ mathematical set theory for describing data structures

▶ linear-time temporal logic for describing executions of algorithms

▶ represent state machines as formulas

Tool support

▶ TLC: explicit-state model checker (Yu et al., 1999)

▶ Apalache: SMT-based symbolic model checker (Konnov et al., 2019)

▶ PlusCal: front-end algorithmic language (Lamport, 2009)

▶ IDEs: TLA+ Toolbox, VS Code Extension

TLAPS: interactive proof support for reasoning about TLA+ specifications
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Outline

1 TLAPS in Action: Distributed Termination Detection

2 Encoding TLA+ for Backends of TLAPS

3 Implementing Termination Detection

4 Conclusion
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Nodes in a distributed system perform some computation
▶ nodes can be active (double circle) or inactive (simple circle)

Possible transitions
▶ an active node may locally terminate its computation
▶ an active node may send a message to another node, activating the receiver

Eventually, the system may signal global termination
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Modeling Termination Detection in TLA+: System Configurations

MODULE TerminationDetection
EXTENDS Naturals
CONSTANT N
ASSUME NAssumption ∆

= N ∈ Nat \ {0}
Node ∆

= 0 .. N−1
VARIABLES active, termDetected

TypeOK ∆
= active ∈ [Node→ BOOLEAN] ∧ termDetected ∈ BOOLEAN

vars ∆
= ⟨active, termDetected⟩

terminated ∆
= ∀n ∈ Node : active[n] = FALSE

Declaration of constant parameters and of variables (untyped)

Definition of some basic operators
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Modeling Termination Detection in TLA+: State Machine

Initial condition

Init ∆
= ∧ active ∈ [Node→ BOOLEAN]

∧ termDetected ∈ {FALSE, terminated}

State transitions

Terminate(i) ∆
= ∧ active[i] ∧ active′ = [active EXCEPT ![i] = FALSE]

∧ termDetected′ ∈ {termDetected, terminated′}
Message(i, j) ∆

= ∧ active[i] ∧ active′ = [active EXCEPT ![j] = TRUE]

∧ UNCHANGED termDetected

SignalTerminated ∆
= ∧ terminated∧ termDetected′ = TRUE

∧ UNCHANGED active

Overall specification

Next ∆
= ∃i, j ∈ Node : Terminate(i) ∨ SendMsg(i, j) ∨ SignalTerminated

Spec ∆
= Init∧2[Next]vars ∧WFvars(SignalTerminated)
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Expressing and Checking Correctness Properties

Safety properties: “nothing bad ever happens”

▶ type correctness Spec⇒ 2TypeOK

▶ correct termination detection Spec⇒ 2(termDetected⇒ terminated)

▶ quiescence of the system Spec⇒ 2(terminated⇒ 2terminated)

Liveness properties: “something good happens eventually”

▶ eventual termination detection Spec⇒ 2(terminated⇒ 3termDetected)

For finite instances, these properties can be verified using TLC

▶ safety properties can also be checked using symbolic model checker Apalache
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Using TLAPS to Prove Safety Properties

TLAPS: proof assistant for verifying TLA+ specifications
▶ not limited to fixed instances, unlike model checkers
▶ relies on user interaction to guide verification

Proving a simple invariant in TLAPS

THEOREM TypeCorrect ∆
= Spec⇒ 2TypeOK

⟨1⟩1. Init⇒ TypeOK
⟨1⟩2. TypeOK ∧ [Next]vars ⇒ TypeOK′

⟨1⟩3. QED BY ⟨1⟩1, ⟨1⟩2, PTL DEF Spec

▶ hierarchical proof language represents proof tree
▶ steps can be proved in any order: usually start with QED step
▶ theorem follows from steps ⟨1⟩1 and ⟨1⟩2 by propositional temporal logic

▶ steps ⟨1⟩1 and ⟨1⟩2 are proved by expanding definitions
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Proofs of Further Safety Properties

The other safety properties are proved similarly, relying on type correctness

THEOREM CorrectDetection ∆
= Spec⇒ TDCorrect

⟨1⟩1. Init⇒ TDCorrect BY DEF Init, TDCorrect
⟨1⟩2. TypeOK ∧ TDCorrect∧ [Next]vars ⇒ TDCorrect′ BY DEF TDCorrect, Next, vars, . . .
⟨1⟩3. QED BY ⟨1⟩1, ⟨1⟩2, TypeCorrect, PTL DEF Spec

THEOREM Quiescent ∆
= Spec⇒ Quiescence

⟨1⟩. TypeOK ∧ [Next]vars ⇒ (terminated⇒ terminated′) BY DEF TypeOK, terminated, Next, vars, . . .
⟨1⟩. QED BY TypeCorrect, PTL DEF Spec, Quiescence

Explicit invocation of definitions and facts

Hierarchical proofs when brute-force expansion fails

Minimal use of temporal logic
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Fairness Conditions and Enabledness of Actions

Liveness properties depend on fairness hypotheses

▶ TLA+ specifications Init∧2[Next]vars allow for stuttering steps

▶ fairness conditions rule out infinite stuttering

WFvars(A)
∆
= 2

(
(2ENABLED ⟨A⟩vars)⇒ 3⟨A⟩vars

)
▶ ENABLED A ∆

= ∃vars′ : A characterizes states in which an A step is possible

Reduce enabledness conditions to simple state predicates

LEMMA EnabledST ∆
= ASSUME TypeOK

PROVE (ENABLED ⟨SignalTerminated⟩vars) ≡ terminated∧ ¬termDetected
BY ExpandENABLED DEF TypeOK, SignalTerminated, vars, terminated
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Proving Liveness

Establishing liveness is now easy

THEOREM Liveness ∆
= Spec⇒ 2(terminated⇒ 3termDetected)

⟨1⟩1. DEFINE P ∆
= terminated∧ ¬termDetected Q ∆

= termDetected
⟨1⟩2. TypeOK ∧ P∧ [Next]vars ⇒ P′ ∨Q′ BY DEF TypeOK, Next, vars, . . .
⟨1⟩3. TypeOK ∧ P∧ ⟨SignalTerminated⟩vars ⇒ Q′ BY DEF TypeOK, SignalTerminated
⟨1⟩4. TypeOK ∧ P⇒ ENABLED ⟨SignalTerminated⟩vars BY EnabledST
⟨1⟩5. QED BY ⟨1⟩2, ⟨1⟩3, ⟨1⟩4, PTL DEF Spec

▶ steps ⟨1⟩2 and ⟨1⟩3 require standard action-level reasoning

▶ step ⟨1⟩4 is an immediate consequence of lemma EnabledST

Propositional temporal reasoning is again enough here

▶ first-order temporal logic is required when reasoning about well-founded orders
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TLAPS Architecture

TLA+ Proof System

Proof Manager

Back-end provers

TLA+ IDE

Pre-process module
Generate

proof obligations

Call external provers
to attempt proof

Certify proof
(optional)

Isabelle/TLA+ Zenon SMT PTL

Isabelle/TLA+: faithful encoding of TLA+ in Isabelle’s meta-logic

PTL: decision procedure for propositional temporal logic
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Outline

1 TLAPS in Action: Distributed Termination Detection

2 Encoding TLA+ for Backends of TLAPS

3 Implementing Termination Detection
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Untyped Logic: Boolean Expressions

TLA+ is untyped: no distinction between terms and formulas

(42 = TRUE) ∧ “abc” denotes some (undetermined) value

Two-valued semantics with underspecification

▶ operators such as =, ∈, ∧, ∀ always evaluate to TRUE or FALSE

▶ (p = q) ⇒ (p⇔ q) holds, but (p⇔ q) ⇒ (p = q) does not

Most standard laws of logic remain true

(¬P) = (P⇒ FALSE) ¬(P∧Q) = (¬P∨ ¬Q) boolify(P) ∆
= P = TRUE

(P∧ TRUE) = boolify(P) boolify(x = y) = (x = y) boolify(Q∧ R) = (Q∧ R)
P(t)⇒ (∃x : P(x)) (∀x : P(x))⇒ P(x)
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Encoding Set Theory

Reduce set-theoretic constructions to first-order logic
▶ define set-theoretic operators in terms of uninterpreted binary predicate ∈

e ∈ (S∪ T) ≡ (e ∈ S) ∨ (e ∈ T)
S ⊆ T ≡ ∀x ∈ S : x ∈ T
e ∈ { x ∈ S : P(x) } ≡ (e ∈ S) ∧ P(e)
e ∈ { f (x) : x ∈ S } ≡ ∃x ∈ S : e = f (x)

Two implementations of this encoding
▶ first implementation relies on extensive rewriting
▶ second implementation uses axioms with well-chosen triggers
▶ no significant performance difference, but rewriting is brittle

TLA+ functions encoded in a similar way
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Untyped Logic: Theory Reasoning

SMT solvers provide automation for interpreted theories

Untyped embedding: inject interpreted sorts into TLA+ universe

u

Int

int

i j

i2u

+

plus

Characteristic axioms

∀i, j : i2u(i) = i2u(j)⇒ i = j

∀u : u ∈ Int ≡ ∃i : u = i2u(i)

∀i, j : plus(i2u(i), i2u(j)) = i2u(i + j)

Use of triggers again makes this work in practice
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Support for Temporal Logic Reasoning

Temporal logic breaks natural deduction

▶ F ⊢ G cannot be identified with ⊢ F⇒ G

▶ for example, have F ⊢ 2F but not ⊢ F⇒ 2F

▶ But: 2F ⊢ G can be identified with ⊢ 2F⇒ G

Arrange temporal reasoning so that all hypotheses are boxed

▶ formula F is boxed if F⇔ 2F

▶ syntactic approximation: constant formulas, 2F, 32F, WFv(A), conjunction, . . .

▶ implicit generalization of formulas derived in boxed context

▶ requires disciplined, but quite natural use of temporal reasoning
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Temporal Logic Reasoning in Practice

Reduce temporal conclusions to action-level hypotheses

P∧ [N]v ⇒ P′ ∨Q′ P∧ ⟨A⟩v ⇒ Q′ P⇒ ENABLED ⟨A⟩v
2[N]v ∧WFv(A) ⇒ 2(P⇒ 3Q)

Temporal reasoning is mostly propositional

▶ use PTL decision procedure rather than hard-wired rules

Support for first-order temporal reasoning by on-the-fly abstraction

▶ hide operators that are not part of PTL, and vice versa

▶ during pre-processing, commute ∀ and 2 as well as ∃ and 3
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First-Order Temporal Reasoning

THEOREM Init∧2[Next]v ⇒ ∀p ∈ Proc : 2Safe(p)
⟨1⟩. SUFFICES ASSUME NEW p ∈ Proc

PROVE Init∧2[Next]v ⇒ 2Safe(p)
OBVIOUS

⟨1⟩1. Init⇒ Safe(p) BY DEF Init, Safe, . . .
⟨1⟩2. Safe(p) ∧ [Next]v ⇒ Safe(p)′ BY DEF Safe, Next, v, . . .
⟨1⟩3. QED BY ⟨1⟩1, ⟨1⟩2, PTL

Mix of first-order and temporal reasoning
▶ first-order provers vs. PTL decision procedure
▶ prime “modality” handled by pre-processing at action level

What is really going on here?
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Coalescing: Basic Idea

Abstract subformulas from different sublogic
▶ in the SUFFICES step, the FOL prover sees the proof obligation

p ∈ Proc Init∧ 2[Next]v ⇒ 2Safe (p)

Init∧ 2[Next]v ⇒ ∀p ∈ Proc : 2Safe (p)

▶ in the QED step, the PTL decision procedure sees

Init ⇒ Safe(p) Safe(p) ∧ [Next]v ⇒ c Safe(p)

Init ∧2 [Next]v ⇒ 2 Safe(p)

▶ the formulas in boxes are introduced as ad-hoc operators

Sound combination of temporal and first-order reasoning
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Outline

1 TLAPS in Action: Distributed Termination Detection

2 Encoding TLA+ for Backends of TLAPS

3 Implementing Termination Detection

4 Conclusion
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Overall Idea of Dijkstra’s Algorithm (EWD 840, 1983)

Token circulates on the ring of nodes

0

3

2

1 ;

0

3

2

1 ;

0

3

2

1 · · · ;

0

3

2

1

▶ a node that has locally terminated passes the token to its neighbor
▶ when a node sends a message to a higher-numbered node, it becomes “stained”
▶ passing token cleans the node but collects the “stain”

Condition for detecting termination
▶ master node is inactive and clean and holds clean token
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Specifying and Verifying Dijkstra’s Algorithm

Modeling the algorithm in TLA+ is a straightforward exercise

Expected properties: type correctness, safety, quiescence, liveness
▶ we can prove these in the same way as for the abstract version
▶ alternatively: prove that EWD840 refines TerminationDetection

TD ∆
= INSTANCE TerminationDetection WITH termDetected ← terminationDetected

THEOREM Refinement ∆
= Spec⇒ TD!Spec

▶ stuttering invariance of TLA formulas is essential for this to work

First step: establish Dijkstra’s invariant for EWD840

Inv ∆
= ∨ ∀i ∈ Node : tpos < i⇒ ¬active[i]
∨ ∃j ∈ 0 .. tpos : color[j] = “orange”
∨ tcolor = “orange”
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Proving Refinement

Safety part: we need to prove two facts

Init⇒ TD!Init
[Next]vars ⇒ [TD!Next]TD!vars

▶ initialization is straightforward

▶ step simulation relies on the already established invariant

Liveness part: Spec⇒ WFTD!vars(TD!SignalTerminated)

▶ show that TD!SignalTerminated cannot stay enabled forever
▶ algorithm may require 3 rounds of the token after global termination
▶ (i) bring token back to node 0, (ii) clean all nodes, (iii) establish terminationDetected
▶ standard liveness proof for EWD840 specification
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Summing Up

TLAPS: Proof support for TLA+

▶ focus on automation and usability, not foundational purity
▶ declarative proof language allows engineers to decompose the overall proof
▶ extensible set of automated back-end reasoners
▶ adapt backend reasoners to the language, not the other way round
▶ sound integration of predicate logic and modal/temporal reasoning

Ongoing work

▶ better automation for data structures (sequences, bags, . . . )
▶ help with discovering useful facts and expanding definitions
▶ improved IDE support (proof decomposition, refactoring)
▶ certification of SMT proofs in foundational proof assistants
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