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Today’s plan

(FMSD paper; FM-Milano; general model under review)

Real-Time Scheduling (RTS)
challenges of formally describing a Scheduler

quick reminder(?) of rely/guarantee idea
two-minute guide to “time bands”
how these ideas help formalise RTS
open issues
conclusions + related work
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Real-Time Scheduling (RTS) — Alan Burns

tasks define classes of Jobs
TaskInfo type defines resource demands, . . .
a Planning phase chooses scheduling “discipline”
checks “schedulability”
Scheduler must follow selected scheduling discipline

Time ∥ Planning ; {Scheduler ∥ Job1 ∥ Job2 ∥ · · · ∥ Jobk}

aim: specification of Scheduler

“mixed criticality” facilitates fault-tolerance wrt
jobs overrunning, arriving too early, etc.
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Rely/Guarantee (R/G)

basic idea specify interference:
pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

∥ -Ic

{P1, R ∨ G2} S1 {G1, Q1}
{P2, R ∨ G1} S2 {G2, Q2}
{P1 ∧ P2, R} S1 ∥ S2 {G1 ∨ G2, Q1 ∧ Q2}

“top down” design/record from abstract specification
“compositionality” is crucial [dRdBH+01]
compare Owicki/Gries [Jon24]

RGSep [Vaf07] SAGL
relations give only restricted expressiveness
but have proved useful — RTS extra challenges
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“Relying on” the environment

R/G conceived as a (top-down) decomposition rule
later applied to rely on non-developed components

e.g. physical components
can even “deduce the spec of control system” [BHJ20]

specify overall system 

derive spec of silicon box 

rely 

of course, don’t blandly “rely on”
customer/deployer has to agree the assumptions
“R/G thinking” ≈ “record assumptions”
layered R/G for fault-tolerance

optimistic rely + guarantee ideal behaviour
weaker rely + less desirable guarantee
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“Time bands” briefly! — see Burns/Hayes [BH10]

y1
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Y

Time
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y2
y3

x

clearer specification at multiple bands (see [BHJ20])
but not refinements: implementation must satisfy all bands
“Granularity” G; only need today is “precision” ρ
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Data: abstraction, reification
+ data type invariants (DTIs)

data abstraction/reification in development methods
more important than operation decomposition?
most specifications: same collection of base types
predicate restriction = DTI

useful (especially for future proofing)
DTIs as “meta pre/post conditions”

R/G can become long (difficult to understand)
DTI as meta rely/guarantee conditions
reduces length/complexity of R/G conditions

“dynamic invariants”?
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Use in tackling RTS

Time ∥ (Planning;RunTime)
Planning

select discipline e.g. FCFS, EDF, FP
check schedulability: “Response Time Analysis”

RunTime = Scheduler ∥ Job1 ∥ · · · ∥ Jobk

R/G of Scheduler/Job relate to resources (time)

Scheduler design assumes Jobs will not exceed resource
(WCET, arrival)
guarantee that their Jobs will be given resource (TaskInfo)
for Fault Tolerance (F-T):

strong assumptions require ideal behaviour
weaker assumptions require hi-crit serviced
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Time itself

schedules relate to Time in the external world
but the Scheduler can only use internal t:ClockValue

so our overall spec based on:
Σ = Time → State

State changed by “operations” — Time marches on!
“time band” idea links ClockValue/Time
DTI + notion of precision ρ
rely on Clock accuracy
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Time itself

Σ = Time → State
where

inv-Σ(σ) △ T (σ) ∧ E(σ)

T (σ) △

(∀α ∈ Time · σ(α).t =ρ α) ∧
(∀α1, α2 ∈ Time · α1 < α2 ⇒ σ(α1).t ≤ σ(α2).t)

E(σ) △
∀α1, α2 ∈ Time ·

∀j ∈ (domσ(α1).used ∩ domσ(α2).used) ·
((∀α | α1 ≤ α ≤ α2 · σ(α).run = j) ⇒ σ(α2).used(j) − σ(α1).used(j) =ρ α2 − α1) ∧
((∀α | α1 ≤ α ≤ α2 · σ(α).run ̸= j) ⇒ σ(α2).used(j) = σ(α1).used(j))
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Forcing progress

Scheduler operations: Release,Overrun,Mode-up

trigger action on Job release
inv-State: ∀j ∈ JobId · t ≤ deadlinej forces progress!
slight simplification: deadlines can change
Scheduler only preserves inv-State if it acts!
appropriate JobId in run
Scheduler gets rid of a Job by giving it resource
remember: spec ̸= implementation
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Schedulability: Response Time Analysis

FCFS/EDF/FP
EDF is “optimal” for single core
will actual WCET etc. “fit”
including in degraded modes
critical instant:
consider all jobs arriving at time zero
see MPI research: [BVB+22, MBB22] (Coq proofs)
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Open issues

marry with response time analysis
overall specification is tricky!
multi-core
the Planning/ · · · split has hints of ML trainingi/deployment
“dynamic invariants” for concurrency

“dynamic invariants” in design (cf. loop invariants)
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Conclusions

R/G helps formalise RTS specification
general model: applied to various scheduling disciplines

interesting extensions
Time/ClockValue
“liveness” (or progress)
invariant + a clock concept for termination!
vs. (limited) use of TL
shades of Rick Hehner here?

future work
link to “response time analysis”
mechanise proofs (cf. [BVB+22])

subtext: formalism pays of more in design than post facto
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