
Rely-Guarantee “thinking”
for Real-Time Scheduling

Cliff Jones: Newcastle University
(joint with Alan Burns: University of York)

WG2.3
Athens

2025-05-21

1 / 15



Today’s plan

(FMSD paper; FM-Milano; general model under review)

Real-Time Scheduling (RTS)
challenges of formally describing a Scheduler

quick reminder(?) of rely/guarantee idea
two-minute guide to “time bands”
how these ideas help formalise RTS
open issues
conclusions + related work

2 / 15



Real-Time Scheduling (RTS) — Alan Burns

tasks define classes of Jobs
TaskInfo type defines resource demands, . . .
a Planning phase chooses scheduling “discipline”
checks “schedulability”
Scheduler must follow selected scheduling discipline

Time ∥ Planning ; {Scheduler ∥ Job1 ∥ Job2 ∥ · · · ∥ Jobk}

aim: specification of Scheduler

“mixed criticality” facilitates fault-tolerance wrt
jobs overrunning, arriving too early, etc.

3 / 15



Rely/Guarantee (R/G)

basic idea specify interference:
pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

∥ -Ic

{P1, R ∨ G2} S1 {G1, Q1}
{P2, R ∨ G1} S2 {G2, Q2}
{P1 ∧ P2, R} S1 ∥ S2 {G1 ∨ G2, Q1 ∧ Q2}

“top down” design/record from abstract specification
“compositionality” is crucial [dRdBH+01]
compare Owicki/Gries [Jon24]

RGSep [Vaf07] SAGL
relations give only restricted expressiveness
but have proved useful — RTS extra challenges

4 / 15



“Relying on” the environment

R/G conceived as a (top-down) decomposition rule
later applied to rely on non-developed components

e.g. physical components
can even “deduce the spec of control system” [BHJ20]

specify overall system 

derive spec of silicon box 

rely 

of course, don’t blandly “rely on”
customer/deployer has to agree the assumptions
“R/G thinking” ≈ “record assumptions”
layered R/G for fault-tolerance

optimistic rely + guarantee ideal behaviour
weaker rely + less desirable guarantee

5 / 15



“Time bands” briefly! — see Burns/Hayes [BH10]

y1

C B A

Y

Time

Z1

y2
y3

x

clearer specification at multiple bands (see [BHJ20])
but not refinements: implementation must satisfy all bands
“Granularity” G; only need today is “precision” ρ

6 / 15



Data: abstraction, reification
+ data type invariants (DTIs)

data abstraction/reification in development methods
more important than operation decomposition?
most specifications: same collection of base types
predicate restriction = DTI

useful (especially for future proofing)
DTIs as “meta pre/post conditions”

R/G can become long (difficult to understand)
DTI as meta rely/guarantee conditions
reduces length/complexity of R/G conditions

“dynamic invariants”?

7 / 15



Use in tackling RTS

Time ∥ (Planning;RunTime)
Planning

select discipline e.g. FCFS, EDF, FP
check schedulability: “Response Time Analysis”

RunTime = Scheduler ∥ Job1 ∥ · · · ∥ Jobk

R/G of Scheduler/Job relate to resources (time)

Scheduler design assumes Jobs will not exceed resource
(WCET, arrival)
guarantee that their Jobs will be given resource (TaskInfo)
for Fault Tolerance (F-T):

strong assumptions require ideal behaviour
weaker assumptions require hi-crit serviced

8 / 15



Time itself

schedules relate to Time in the external world
but the Scheduler can only use internal t:ClockValue

so our overall spec based on:
Σ = Time → State

State changed by “operations” — Time marches on!
“time band” idea links ClockValue/Time
DTI + notion of precision ρ
rely on Clock accuracy

9 / 15



Time itself

Σ = Time → State
where

inv-Σ(σ) △ T (σ) ∧ E(σ)

T (σ) △

(∀α ∈ Time · σ(α).t =ρ α) ∧
(∀α1, α2 ∈ Time · α1 < α2 ⇒ σ(α1).t ≤ σ(α2).t)

E(σ) △
∀α1, α2 ∈ Time ·

∀j ∈ (domσ(α1).used ∩ domσ(α2).used) ·
((∀α | α1 ≤ α ≤ α2 · σ(α).run = j) ⇒ σ(α2).used(j) − σ(α1).used(j) =ρ α2 − α1) ∧
((∀α | α1 ≤ α ≤ α2 · σ(α).run ̸= j) ⇒ σ(α2).used(j) = σ(α1).used(j))

10 / 15



Forcing progress

Scheduler operations: Release,Overrun,Mode-up

trigger action on Job release
inv-State: ∀j ∈ JobId · t ≤ deadlinej forces progress!
slight simplification: deadlines can change
Scheduler only preserves inv-State if it acts!
appropriate JobId in run
Scheduler gets rid of a Job by giving it resource
remember: spec ̸= implementation

11 / 15



Schedulability: Response Time Analysis

FCFS/EDF/FP
EDF is “optimal” for single core
will actual WCET etc. “fit”
including in degraded modes
critical instant:
consider all jobs arriving at time zero
see MPI research: [BVB+22, MBB22] (Coq proofs)

12 / 15



Open issues

marry with response time analysis
overall specification is tricky!
multi-core
the Planning/ · · · split has hints of ML trainingi/deployment
“dynamic invariants” for concurrency

“dynamic invariants” in design (cf. loop invariants)

13 / 15



Conclusions

R/G helps formalise RTS specification
general model: applied to various scheduling disciplines

interesting extensions
Time/ClockValue
“liveness” (or progress)
invariant + a clock concept for termination!
vs. (limited) use of TL
shades of Rick Hehner here?

future work
link to “response time analysis”
mechanise proofs (cf. [BVB+22])

subtext: formalism pays of more in design than post facto

14 / 15



References
A. Burns and I.J. Hayes.
A timeband framework for modelling real-time systems.
Real-Time Systems Journal, 45(1–2):106–142, June 2010.

Alan Burns, Ian J. Hayes, and Cliff B. Jones.
Deriving specifications of control programs for cyber physical systems.
The Computer Journal, 63(5):774–790, 2020.

Jonathan P. Bowen, Qin Li, and Qiwen Xu, editors.
Theories of Programming and Formal Methods, number 14080 in lncs. springer, 2023.

Kimaya Bedarkar, Mariam Vardishvili, Sergey Bozhko, Marco Maida, and Björn B Brandenburg.
From intuition to Coq: A case study in verified response-time analysis of FIFO scheduling.
In 2022 IEEE Real-Time Systems Symposium (RTSS), pages 197–210. IEEE, 2022.

Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman, Yassine Lakhnech, Mannes Poel,
and Job Zwiers.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

Cliff B. Jones.
Three early formal approaches to the verification of concurrent programs.
Minds and Machines, 34:73–92, 2024.

Marco Maida, Sergey Bozhko, and Björn B Brandenburg.
Foundational response-time analysis as explainable evidence of timeliness.
In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

Viktor Vafeiadis.
Modular fine-grained concurrency verification.
PhD thesis, University of Cambridge, 2007.

15 / 15


