
Justin Hsu
Cornell University

Type Systems
for Numerical Error Analysis

1

Floating Point (FP) Arithmetic Is Everywhere

2

Floating Point (FP) Arithmetic Is Everywhere

2

Floating Point (FP) Arithmetic Is Everywhere

2

Floating Point (FP) Arithmetic Is Everywhere

2

What Do the Floating Point Numbers Look Like?

— https://xkcd.com/899

3

https://xkcd.com/899

What Do the Floating Point Numbers Look Like?

— https://xkcd.com/899

3

https://xkcd.com/899

What the Floating Point Numbers Actually Look Like

— Sun Microsystems, Inc.

4

FP Computations Have Roundoff Error

Can only represent finitely many numbers: F ⊆ R
▶ Number of representable reals depends on precision (double, float, half, etc.)
▶ FP arithmetic operations must round to represent result

FP versions of standard arithmetic operations satisfy:
a ⊕F b = (1 + δ) · (a ⊕R b) + ϵ a ⊗F b = (1 + δ) · (a ⊗R b) + ϵ

Parameters δ, ϵ can depend on a, b, but are bounded by a constant

5

Problem: Can We Statically Bound the Amount of Roundoff Error?

Helpful to numerical programmers
▶ Provide guidance on how much precision is needed
▶ Identify sources of error, reason about error propagation

Long history of verification methods
▶ Abstract interpretation, interval arithmetic (e.g., Gappa, PRECiSA)
▶ SMT-based approaches (e.g., Daisy, Rosa)
▶ Global optimization, semi-definite programming (e.g., FPTaylor, Real2Float)
▶ Interactive theorem proving (e.g., Isabelle/HOL, VCFloat)

6

Problem: Can We Statically Bound the Amount of Roundoff Error?

Helpful to numerical programmers
▶ Provide guidance on how much precision is needed
▶ Identify sources of error, reason about error propagation

Long history of verification methods
▶ Abstract interpretation, interval arithmetic (e.g., Gappa, PRECiSA)
▶ SMT-based approaches (e.g., Daisy, Rosa)
▶ Global optimization, semi-definite programming (e.g., FPTaylor, Real2Float)
▶ Interactive theorem proving (e.g., Isabelle/HOL, VCFloat)

6

Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7

Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7

Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7

Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7

Today: the NumFuzz Type System for Bounding FP Error

• Goal: Forward Error Analysis

• Ingredient 1: Sensitivity Analysis

• Ingredient 2: Error Analysis

8

Joint Work with Excellent Coauthors!

Ariel Kellison Laura Zielinski David Bindel

9

Forward Error Analysis:
A Quick Introduction

10

Goal: Bound the Distance between Ideal and Approximate
A given program P can be executed ideally or approximately (FP)
▶ For program P , define ideal JP Kid and approximate (FP) JP Kfp semantics
▶ Example: Jx ⊕ yKid is exact (real) addition, while Jx ⊕ yKfp is FP addition

Forward error: maximum distance between JP Kid and JP Kfp on same input

a ∈ A b ∈ B

b̃ ∈ B

JP Kid

JP Kfp

Forward error: δ

11

Goal: Bound the Distance between Ideal and Approximate
A given program P can be executed ideally or approximately (FP)
▶ For program P , define ideal JP Kid and approximate (FP) JP Kfp semantics
▶ Example: Jx ⊕ yKid is exact (real) addition, while Jx ⊕ yKfp is FP addition

Forward error: maximum distance between JP Kid and JP Kfp on same input

a ∈ A b ∈ B

b̃ ∈ B

JP Kid

JP Kfp

Forward error: δ

11

Question 1: How Is Error Introduced?

Not all operations introduce floating-point error
▶ Primitive arithmetic operations: introduce floating-point error
▶ Other “regular” operations (assignment, pairing, projection, etc.): no FP error

Error-producing operations depend on application, compiler, hardware, . . .
▶ Example: multiply-add versus fused multiply-add
▶ Want flexibility to model different kinds of error-producing operations

12

Question 2: How Do Error Bounds Compose?

Example: P has forward error δ and Q has forward error ϵ

a ∈ A b ∈ B c ∈ C

b̃ ∈ B

c̃ ∈ C

JP Kid

JP Kfp

JQKid

δ

???

JQKfp

Bound error by showing Lipschitz guarantee for ideal behavior JQKid

13

Question 2: How Do Error Bounds Compose?

Example: P has forward error δ and Q has forward error ϵ

a ∈ A b ∈ B c ∈ C

b̃ ∈ B • ∈ C

c̃ ∈ C

JP Kid

JP Kfp

JQKid

δ ???
JQKid

JQKfp

ϵ

Bound error by showing Lipschitz guarantee for ideal behavior JQKid

13

Question 2: How Do Error Bounds Compose?

Example: P has forward error δ and Q has forward error ϵ

a ∈ A b ∈ B c ∈ C

b̃ ∈ B • ∈ C

c̃ ∈ C

JP Kid

JP Kfp

JQKid

δ ???
JQKid

JQKfp

ϵ

Bound error by showing Lipschitz guarantee for ideal behavior JQKid

13

Ingredient 1:
Sensitivity Analysis

14

Fuzz: A Linear Type System for Sensitivity Analysis

A functional programming language
▶ Lambda calculus with pairs, enums, functions, lists, recursive datatypes, etc.
▶ Support for higher-order functions and patterns (e.g., maps, folds)

A linear type system based on Bounded Linear Logic
▶ Each type is equipped with a metric
▶ Type system tracks sensitivity of each variable via number of uses

Originally: verifying differential privacy (Reed and Pierce, 2010)
▶ Later: other notions of privacy, generalizing to effects and “coeffects”, etc.
▶ Efficient typechecking (linear in size of program), few annotations required

15

Fuzz: A Linear Type System for Sensitivity Analysis

A functional programming language
▶ Lambda calculus with pairs, enums, functions, lists, recursive datatypes, etc.
▶ Support for higher-order functions and patterns (e.g., maps, folds)

A linear type system based on Bounded Linear Logic
▶ Each type is equipped with a metric
▶ Type system tracks sensitivity of each variable via number of uses

Originally: verifying differential privacy (Reed and Pierce, 2010)
▶ Later: other notions of privacy, generalizing to effects and “coeffects”, etc.
▶ Efficient typechecking (linear in size of program), few annotations required

15

Fuzz: A Linear Type System for Sensitivity Analysis

A functional programming language
▶ Lambda calculus with pairs, enums, functions, lists, recursive datatypes, etc.
▶ Support for higher-order functions and patterns (e.g., maps, folds)

A linear type system based on Bounded Linear Logic
▶ Each type is equipped with a metric
▶ Type system tracks sensitivity of each variable via number of uses

Originally: verifying differential privacy (Reed and Pierce, 2010)
▶ Later: other notions of privacy, generalizing to effects and “coeffects”, etc.
▶ Efficient typechecking (linear in size of program), few annotations required

15

Fuzz: A Linear Type System for Sensitivity Analysis

A functional programming language
▶ Lambda calculus with pairs, enums, functions, lists, recursive datatypes, etc.
▶ Support for higher-order functions and patterns (e.g., maps, folds)

A linear type system based on Bounded Linear Logic
▶ Each type is equipped with a metric
▶ Type system tracks sensitivity of each variable via number of uses

Originally: verifying differential privacy (Reed and Pierce, 2010)
▶ Later: other notions of privacy, generalizing to effects and “coeffects”, etc.
▶ Efficient typechecking (linear in size of program), few annotations required

15

Example: Numeric Types

Numbers under absolute distance numabs

▶ Carrier set: elements of numabs drawn from real numbers R
▶ Metric: standard distance d(a, b) ≜ |a − b|

Numbers under relative distance numrel

▶ Carrier set: elements of numrel drawn from non-negative reals R+

▶ Metric: relative distance d(a, b) ≜ |ln(a) − ln(b)| = |ln(a/b)|
▶ Known as the relative precision (RP) distance (Olver, 1978)

16

Example: Numeric Types

Numbers under absolute distance numabs

▶ Carrier set: elements of numabs drawn from real numbers R
▶ Metric: standard distance d(a, b) ≜ |a − b|

Numbers under relative distance numrel

▶ Carrier set: elements of numrel drawn from non-negative reals R+

▶ Metric: relative distance d(a, b) ≜ |ln(a) − ln(b)| = |ln(a/b)|
▶ Known as the relative precision (RP) distance (Olver, 1978)

16

Example: Numeric Types

Numbers under absolute distance numabs

▶ Carrier set: elements of numabs drawn from real numbers R
▶ Metric: standard distance d(a, b) ≜ |a − b|

Numbers under relative distance numrel

▶ Carrier set: elements of numrel drawn from non-negative reals R+

▶ Metric: relative distance d(a, b) ≜ |ln(a) − ln(b)| = |ln(a/b)|
▶ Known as the relative precision (RP) distance (Olver, 1978)

16

The RP Distance: A Closer Look

What does RP measure?
RP distance at most ϵ means points differ by at most exp(ϵ) ≈ (1 + ϵ) factor:

RP (a, b) ≤ ϵ ⇐⇒ |ln(a/b)| ≤ ϵ ⇐⇒ exp(−ϵ) ≤ a/b ≤ exp(ϵ)

Why does RP involve logarithms?
RP distance satisfies the triangle inequality:

▶ Given: RP (a, b) ≤ ϵ and RP (b, c) ≤ δ

▶ By definition: |ln(a) − ln(b)| ≤ ϵ and |ln(b) − ln(c)| ≤ δ

▶ Triangle inequality: |ln(a) − ln(c)| ≤ ϵ + δ

▶ Thus by definition: RP (a, c) ≤ ϵ + δ.

17

The RP Distance: A Closer Look

What does RP measure?
RP distance at most ϵ means points differ by at most exp(ϵ) ≈ (1 + ϵ) factor:

RP (a, b) ≤ ϵ ⇐⇒ |ln(a/b)| ≤ ϵ ⇐⇒ exp(−ϵ) ≤ a/b ≤ exp(ϵ)

Why does RP involve logarithms?
RP distance satisfies the triangle inequality:

▶ Given: RP (a, b) ≤ ϵ and RP (b, c) ≤ δ

▶ By definition: |ln(a) − ln(b)| ≤ ϵ and |ln(b) − ln(c)| ≤ δ

▶ Triangle inequality: |ln(a) − ln(c)| ≤ ϵ + δ

▶ Thus by definition: RP (a, c) ≤ ϵ + δ.

17

The RP Distance: A Closer Look

What does RP measure?
RP distance at most ϵ means points differ by at most exp(ϵ) ≈ (1 + ϵ) factor:

RP (a, b) ≤ ϵ ⇐⇒ |ln(a/b)| ≤ ϵ ⇐⇒ exp(−ϵ) ≤ a/b ≤ exp(ϵ)

Why does RP involve logarithms?
RP distance satisfies the triangle inequality:
▶ Given: RP (a, b) ≤ ϵ and RP (b, c) ≤ δ

▶ By definition: |ln(a) − ln(b)| ≤ ϵ and |ln(b) − ln(c)| ≤ δ

▶ Triangle inequality: |ln(a) − ln(c)| ≤ ϵ + δ

▶ Thus by definition: RP (a, c) ≤ ϵ + δ.

17

The RP Distance: A Closer Look

What does RP measure?
RP distance at most ϵ means points differ by at most exp(ϵ) ≈ (1 + ϵ) factor:

RP (a, b) ≤ ϵ ⇐⇒ |ln(a/b)| ≤ ϵ ⇐⇒ exp(−ϵ) ≤ a/b ≤ exp(ϵ)

Why does RP involve logarithms?
RP distance satisfies the triangle inequality:
▶ Given: RP (a, b) ≤ ϵ and RP (b, c) ≤ δ

▶ By definition: |ln(a) − ln(b)| ≤ ϵ and |ln(b) − ln(c)| ≤ δ

▶ Triangle inequality: |ln(a) − ln(c)| ≤ ϵ + δ

▶ Thus by definition: RP (a, c) ≤ ϵ + δ.

17

The RP Distance: A Closer Look

What does RP measure?
RP distance at most ϵ means points differ by at most exp(ϵ) ≈ (1 + ϵ) factor:

RP (a, b) ≤ ϵ ⇐⇒ |ln(a/b)| ≤ ϵ ⇐⇒ exp(−ϵ) ≤ a/b ≤ exp(ϵ)

Why does RP involve logarithms?
RP distance satisfies the triangle inequality:
▶ Given: RP (a, b) ≤ ϵ and RP (b, c) ≤ δ

▶ By definition: |ln(a) − ln(b)| ≤ ϵ and |ln(b) − ln(c)| ≤ δ

▶ Triangle inequality: |ln(a) − ln(c)| ≤ ϵ + δ

▶ Thus by definition: RP (a, c) ≤ ϵ + δ.

17

The RP Distance: A Closer Look

What does RP measure?
RP distance at most ϵ means points differ by at most exp(ϵ) ≈ (1 + ϵ) factor:

RP (a, b) ≤ ϵ ⇐⇒ |ln(a/b)| ≤ ϵ ⇐⇒ exp(−ϵ) ≤ a/b ≤ exp(ϵ)

Why does RP involve logarithms?
RP distance satisfies the triangle inequality:
▶ Given: RP (a, b) ≤ ϵ and RP (b, c) ≤ δ

▶ By definition: |ln(a) − ln(b)| ≤ ϵ and |ln(b) − ln(c)| ≤ δ

▶ Triangle inequality: |ln(a) − ln(c)| ≤ ϵ + δ

▶ Thus by definition: RP (a, c) ≤ ϵ + δ.

17

Example: Richer Datatypes

Tuples of numbers
▶ Sum of distances (L1 metric): num ⊗ · · · ⊗ num
▶ Max of distances (L∞ metric): num & · · · & num

Products and Sums
▶ Two kinds of products (pairs) A ⊗ B and A & B

▶ Sums (enums) have type A + B (either an A or a B)

Functions
▶ (Linear) functions from A to B have type A ⊸ B

▶ All linear functions are non-expansive (1-Lipschitz)
▶ More generally: !rA ⊸ B is type of r-sensitive functions for r ∈ R or ∞

18

Example: Richer Datatypes

Tuples of numbers
▶ Sum of distances (L1 metric): num ⊗ · · · ⊗ num
▶ Max of distances (L∞ metric): num & · · · & num

Products and Sums
▶ Two kinds of products (pairs) A ⊗ B and A & B

▶ Sums (enums) have type A + B (either an A or a B)

Functions
▶ (Linear) functions from A to B have type A ⊸ B

▶ All linear functions are non-expansive (1-Lipschitz)
▶ More generally: !rA ⊸ B is type of r-sensitive functions for r ∈ R or ∞

18

Example: Richer Datatypes

Tuples of numbers
▶ Sum of distances (L1 metric): num ⊗ · · · ⊗ num
▶ Max of distances (L∞ metric): num & · · · & num

Products and Sums
▶ Two kinds of products (pairs) A ⊗ B and A & B

▶ Sums (enums) have type A + B (either an A or a B)

Functions
▶ (Linear) functions from A to B have type A ⊸ B

▶ All linear functions are non-expansive (1-Lipschitz)
▶ More generally: !rA ⊸ B is type of r-sensitive functions for r ∈ R or ∞

18

Example: Typing Addition

Under absolute metric: take sum of changes in input (⊗)

add : numabs ⊗ numabs ⊸ numabs

Change arguments by ϵ and δ absolute: change result by ϵ + δ absolute.

Under relative precision: take max of changes in input (&)

add : numrel & numrel ⊸ numrel

Change arguments by exp(ϵ), exp(δ) factors: change result by exp(max(ϵ, δ)) factor.

19

Example: Typing Addition

Under absolute metric: take sum of changes in input (⊗)

add : numabs ⊗ numabs ⊸ numabs

Change arguments by ϵ and δ absolute: change result by ϵ + δ absolute.

Under relative precision: take max of changes in input (&)

add : numrel & numrel ⊸ numrel

Change arguments by exp(ϵ), exp(δ) factors: change result by exp(max(ϵ, δ)) factor.

19

Example: Typing Multiplication

Under absolute metric: not Lipschitz (“sensitivity is ∞”)

mul : !∞(numabs ⊗ numabs) ⊸ numabs

Change arguments by ϵ and δ absolute: change result by unbounded amount.

Under relative precision: take sum of changes input (⊗)

mul : numrel ⊗ numrel ⊸ numrel

Change arguments by exp(ϵ), exp(δ) factors: change result by exp(ϵ + δ) factor.

20

Example: Typing Multiplication

Under absolute metric: not Lipschitz (“sensitivity is ∞”)

mul : !∞(numabs ⊗ numabs) ⊸ numabs

Change arguments by ϵ and δ absolute: change result by unbounded amount.

Under relative precision: take sum of changes input (⊗)

mul : numrel ⊗ numrel ⊸ numrel

Change arguments by exp(ϵ), exp(δ) factors: change result by exp(ϵ + δ) factor.

20

Typing Judgments and Soundness in Fuzz
Judgments record sensitivity with respect to each variable
▶ Contexts: lists of variables with type and sensitivity r ∈ R

Γ = x1 :r1 A1, . . . , xn :rn An

▶ Judgments: program has a type in a context

x1 :r1 A1, . . . , xn :rn An ⊢ e : B

Soundness theorem (Reed and Pierce, 2010)
Suppose x :r A ⊢ e(x) : B. Then for any two values a1, a2 : A, we have:

dB(e(a1), e(a2)) ≤ r · dA(a1, a2).

In other words, well-typed programs e are r-Lipschitz functions.

21

Typing Judgments and Soundness in Fuzz
Judgments record sensitivity with respect to each variable
▶ Contexts: lists of variables with type and sensitivity r ∈ R

Γ = x1 :r1 A1, . . . , xn :rn An

▶ Judgments: program has a type in a context

x1 :r1 A1, . . . , xn :rn An ⊢ e : B

Soundness theorem (Reed and Pierce, 2010)
Suppose x :r A ⊢ e(x) : B. Then for any two values a1, a2 : A, we have:

dB(e(a1), e(a2)) ≤ r · dA(a1, a2).

In other words, well-typed programs e are r-Lipschitz functions.
21

Categorical Summary: Sensitivity Analysis

Category EPMet of Extended Pseudo-metric Spaces
▶ Extended: metric can assign distance infinity
▶ Pseudo: don’t require reflexivity, distance between distinct points can be zero
▶ Morphisms: non-expansive (“short”) maps

Good category for linear logic
▶ Symmetric monoidal closed structure (⊗,⊸)
▶ Cartesian structure (not closed), coproducts

Graded comonad from scaling
▶ Functors !r : EPMet → EPMet take (A, d) to (A, r · d)
▶ R≥0-graded exponential comonad (Brunel, Gaboardi, Mazza, Zdancewic 2014)

22

Categorical Summary: Sensitivity Analysis

Category EPMet of Extended Pseudo-metric Spaces
▶ Extended: metric can assign distance infinity
▶ Pseudo: don’t require reflexivity, distance between distinct points can be zero
▶ Morphisms: non-expansive (“short”) maps

Good category for linear logic
▶ Symmetric monoidal closed structure (⊗,⊸)
▶ Cartesian structure (not closed), coproducts

Graded comonad from scaling
▶ Functors !r : EPMet → EPMet take (A, d) to (A, r · d)
▶ R≥0-graded exponential comonad (Brunel, Gaboardi, Mazza, Zdancewic 2014)

22

Categorical Summary: Sensitivity Analysis

Category EPMet of Extended Pseudo-metric Spaces
▶ Extended: metric can assign distance infinity
▶ Pseudo: don’t require reflexivity, distance between distinct points can be zero
▶ Morphisms: non-expansive (“short”) maps

Good category for linear logic
▶ Symmetric monoidal closed structure (⊗,⊸)
▶ Cartesian structure (not closed), coproducts

Graded comonad from scaling
▶ Functors !r : EPMet → EPMet take (A, d) to (A, r · d)
▶ R≥0-graded exponential comonad (Brunel, Gaboardi, Mazza, Zdancewic 2014)

22

Ingredient 2:
Error Analysis

23

From Fuzz to NumFuzz: A Type for Tracking Error

So far: types describe data and metric, but not error
▶ Goal: extend types with quantitative error bounds
▶ Get static bounds on amount of roundoff error by inferring types

Idea: add a new family of error types Errδ(A)
▶ A is any type, and δ ∈ R is a numeric bound
▶ Think: pairs (a, ã) : A × A of exact and approximate values, dA(a, ã) ≤ δ.

24

From Fuzz to NumFuzz: A Type for Tracking Error

So far: types describe data and metric, but not error
▶ Goal: extend types with quantitative error bounds
▶ Get static bounds on amount of roundoff error by inferring types

Idea: add a new family of error types Errδ(A)
▶ A is any type, and δ ∈ R is a numeric bound
▶ Think: pairs (a, ã) : A × A of exact and approximate values, dA(a, ã) ≤ δ.

24

Typing Rules: Introducing Error

An ideal computation produces no error

Γ ⊢ e : A

Γ ⊢ ret(e) : Err0(A)

Rounding operation can generate error

Γ ⊢ e : numrel

Γ ⊢ rnd(e) : Erru(numrel)

Error parameter u depends on particular setting (precision, rounding mode, etc.).

25

Typing Rules: Introducing Error

An ideal computation produces no error

Γ ⊢ e : A

Γ ⊢ ret(e) : Err0(A)

Rounding operation can generate error

Γ ⊢ e : numrel

Γ ⊢ rnd(e) : Erru(numrel)

Error parameter u depends on particular setting (precision, rounding mode, etc.).

25

Typing Rules: Introducing Error

An ideal computation produces no error

Γ ⊢ e : A

Γ ⊢ ret(e) : Err0(A)

Rounding operation can generate error

Γ ⊢ e : numrel

Γ ⊢ rnd(e) : Erru(numrel)

Error parameter u depends on particular setting (precision, rounding mode, etc.).

25

Sequencing: Key Interaction between Error Types and Sensitivity
Composing two functions
▶ Program P has forward error δ, and ideal semantics is r-sensitive
▶ Program Q has forward error ϵ, and ideal semantics is s-sensitive
▶ Composition P ; Q should have forward error s · δ + ϵ

In pictures

a ∈ A b ∈ B c ∈ C

b̃ ∈ B • ∈ C

c̃ ∈ C

JP Kid

JP Kfp

JQKid

δ s·δ

s·δ+ϵ
JQKid

JQKfp

ϵ

26

Sequencing: Key Interaction between Error Types and Sensitivity
Composing two functions
▶ Program P has forward error δ, and ideal semantics is r-sensitive
▶ Program Q has forward error ϵ, and ideal semantics is s-sensitive
▶ Composition P ; Q should have forward error s · δ + ϵ

In pictures

a ∈ A b ∈ B c ∈ C

b̃ ∈ B • ∈ C

c̃ ∈ C

JP Kid

JP Kfp

JQKid

δ s·δ

s·δ+ϵ
JQKid

JQKfp

ϵ

26

Typing Rule: Sequencing

Assuming that:
▶ Program P has forward error δ, and ideal semantics is r-sensitive

x :r A ⊢ P (x) : Errδ(B)

▶ Program Q has forward error ϵ, and ideal semantics is s-sensitive

y :s B ⊢ Q(y) : Errϵ(C)

Conclude that:
▶ Composition P ; Q should have forward error s · δ + ϵ

x :r·s A ⊢ bind y = P (x) in Q(y) : Errs·δ+ϵ(C)

27

Typing Rule: Sequencing

Assuming that:
▶ Program P has forward error δ, and ideal semantics is r-sensitive

x :r A ⊢ P (x) : Errδ(B)

▶ Program Q has forward error ϵ, and ideal semantics is s-sensitive

y :s B ⊢ Q(y) : Errϵ(C)

Conclude that:
▶ Composition P ; Q should have forward error s · δ + ϵ

x :r·s A ⊢ bind y = P (x) in Q(y) : Errs·δ+ϵ(C)

27

Interpreting the Error Type:
The Graded Neighborhood Monad

28

Neighborhood Monad: A Graded Monad on EPMet
Grades: (R≥0, 0, +)
▶ Monoid of non-negative real numbers under addition
▶ Think: upper bound on distance between ideal and approximate

Family of functors: {Er : EPMet → EPMet}
▶ Er takes (A, d) to metric space of pairs:

{(a, ã) ∈ A × A | d(a, ã) ≤ r}

Distance on pairs: distance d between first (ideal) components.
▶ Er takes f : A → B to:

Er(f)(a, ã) = (f(a), f(ã))

Since f is non-expansive, this is a map from Er(A) to Er(B).
29

Neighborhood Monad: Unit and Multiplication

Graded unit map
▶ Think: ideal value equal to the approximate value
▶ Unit map ηA : A → E0A defined as:

A ∋ a 7→ (a, a) ∈ E0A

Graded multiplication map
▶ Think: the “ideal” ideal value, and the “approximate” approximate value
▶ Graded multiplication map µr,s,A : ErEsA → Er+sA defined as:

ErEsA ∋ ((a, ã), (b, b̃)) 7→ (a, b̃) ∈ Er+sA

Relies crucially on triangle inequality.

30

Neighborhood Monad: Unit and Multiplication

Graded unit map
▶ Think: ideal value equal to the approximate value
▶ Unit map ηA : A → E0A defined as:

A ∋ a 7→ (a, a) ∈ E0A

Graded multiplication map
▶ Think: the “ideal” ideal value, and the “approximate” approximate value
▶ Graded multiplication map µr,s,A : ErEsA → Er+sA defined as:

ErEsA ∋ ((a, ã), (b, b̃)) 7→ (a, b̃) ∈ Er+sA

Relies crucially on triangle inequality.

30

Neighborhood Monad: Other Structures

Graded strengths: interaction with products in EPMet
▶ Maps str,A : A ⊗ ErB → Er(A ⊗ B) defined as:

A ⊗ ErB ∋ (a, (b, b̃)) 7→ ((a, b), (a, b̃)) ∈ Er(A ⊗ B)

▶ Similar map for Cartesian product A × B.

Graded distributive law: interaction with scaling comonad
▶ Key map: λr,s,A :!rEsA → Es·r!rA

▶ Cf. Gaboardi, Katsumata, Orchard, Breuvart, Uustalu (2016)

31

NumFuzz:
Example Programs

32

Example: Arithmetic Operations

33

Example: Defining Correctly-Rounded Operations

Addition

addfp(a, b) ≜ let z = add(a, b) in rnd(z)

Multiplication

mulfp(a, b) ≜ let z = mul(a, b) in rnd(z)

Types of FP operations: type of ideal operation, plus rounding
▶ Upshot: cleanly separate ideal operation from rounding behavior

34

Example: Defining Correctly-Rounded Operations

Addition

addfp(a, b) ≜ let z = add(a, b) in rnd(z)

Multiplication

mulfp(a, b) ≜ let z = mul(a, b) in rnd(z)

Types of FP operations: type of ideal operation, plus rounding
▶ Upshot: cleanly separate ideal operation from rounding behavior

34

Example: Defining Correctly-Rounded Operations

Addition

addfp(a, b) ≜ let z = add(a, b) in rnd(z)

Multiplication

mulfp(a, b) ≜ let z = mul(a, b) in rnd(z)

Types of FP operations: type of ideal operation, plus rounding
▶ Upshot: cleanly separate ideal operation from rounding behavior

34

Example: Defining Correctly-Rounded Operations

Addition

addfp(a, b) ≜ let z = add(a, b) in rnd(z)

Multiplication

mulfp(a, b) ≜ let z = mul(a, b) in rnd(z)

Types of FP operations: type of ideal operation, plus rounding
▶ Upshot: cleanly separate ideal operation from rounding behavior

34

Example: Multiply-then-add

Compute a ⊗ b ⊕ c as FP multiply, then FP add

ma(a, b, c) ≜ bind m = mulfp(a, b) in
bind n = addfp(m, c) in
ret(n)

Overall type computed from types of FP operations
▶ As expected: incur error from two rounding operation

35

Example: Multiply-then-add

Compute a ⊗ b ⊕ c as FP multiply, then FP add

ma(a, b, c) ≜ bind m = mulfp(a, b) in
bind n = addfp(m, c) in
ret(n)

Overall type computed from types of FP operations
▶ As expected: incur error from two rounding operation

35

Example: Fused multiply-add (FMA)

Compute a ⊗ b ⊕ c: Exact multiply, then exact add, then round

fma(a, b, c) ≜ let m = mul(a, b) in
let n = add(m, c) in
rnd(n)

Overall type computed from types of exact operations and round
▶ As expected: incur error from one rounding operation

36

Example: Fused multiply-add (FMA)

Compute a ⊗ b ⊕ c: Exact multiply, then exact add, then round

fma(a, b, c) ≜ let m = mul(a, b) in
let n = add(m, c) in
rnd(n)

Overall type computed from types of exact operations and round
▶ As expected: incur error from one rounding operation

36

Soundness Theorem: the Error Type Bounds the Forward Error

Define two operational semantics: ideal and approximate (FP)
▶ e ⇓id v means: e evaluates to v under ideal semantics
▶ e ⇓fp v means: e evaluates to v under FP semantics

Theorem (error soundness)
Suppose ⊢ e : Errδ(num) is a well-typed program. Then e ⇓id vid and e ⇓fp vfp, and
dnum(vid, vfp) ≤ δ. Note: holds for numabs or numrel.

37

Soundness Theorem: the Error Type Bounds the Forward Error

Define two operational semantics: ideal and approximate (FP)
▶ e ⇓id v means: e evaluates to v under ideal semantics
▶ e ⇓fp v means: e evaluates to v under FP semantics

Theorem (error soundness)
Suppose ⊢ e : Errδ(num) is a well-typed program. Then e ⇓id vid and e ⇓fp vfp, and
dnum(vid, vfp) ≤ δ. Note: holds for numabs or numrel.

37

NumFuzz:
Empirical Evaluation

38

Prototype Implementation of NumFuzz

Build on prior implementations of Fuzz
▶ Modified an existing OCaml implementation of DFuzz

Requires minimal annotations
▶ Just need to annotate types of function arguments (but not sensitivities)

Efficient type checking/inference algorithm
▶ Automatically infers error types Errδ(A), including error bound δ

▶ Algorithm just involves counting usages, no optimization or SMT

39

Good Performance for Relative Error on Standard Benchmarks

40

Scales to Large Programs

41

Infers Tight Bounds on Relative Error

42

Current Directions
and Conclusions

43

Backward Error Analysis

More subtle notion of error in numerical analysis (Wilkinson, 1950s)
▶ Forward error: how much does ideal output differ from approximate output?
▶ Backward error: is the approximate output exactly correct for a nearby input?

Bean: A Language for Backward Error Analysis (PLDI 2025)
▶ A mixed linear/non-linear type system for backward error analysis
▶ Semantics in a novel category of error lenses (cf. bidirectional programming)
▶ First fully automated analysis for backward error, scales to large programs

44

More Details in the Papers!

Numerical Fuzz: A Type System for Rounding Error Analysis (PLDI 2024)
▶ More about the semantics, extensions of error monad to other effects
▶ Details about implementation, many more benchmarks

Current directions
▶ Supporting subtraction: not Lipschitz sensitive
▶ Reasoning about underflows/subnormals? Running-error bounds?
▶ Neighborhood monad: can we generalize?

45

Big Picture: Correctness for Numerical Programs

Numerical programs are hard
▶ Hard to program: multiple kinds of approximation, stability, performance
▶ Hard to debug: hard to tell if answers are wrong, hard to localize and fix bugs

Numerical programs are interesting
▶ Besides FP error: truncation, approximation, iteration, Monte Carlo, . . .
▶ Properties with mathematical/geometrical/physical flavor (e.g., conservation)

Numerical programs are important
▶ From scientific and physical simulation to digital hardware and arithmetic
▶ Correctness is key: important decisions depend on these computations
▶ Performance is critical: large scale systems, limited by time and space

46

Big Picture: Correctness for Numerical Programs

Numerical programs are hard
▶ Hard to program: multiple kinds of approximation, stability, performance
▶ Hard to debug: hard to tell if answers are wrong, hard to localize and fix bugs

Numerical programs are interesting
▶ Besides FP error: truncation, approximation, iteration, Monte Carlo, . . .
▶ Properties with mathematical/geometrical/physical flavor (e.g., conservation)

Numerical programs are important
▶ From scientific and physical simulation to digital hardware and arithmetic
▶ Correctness is key: important decisions depend on these computations
▶ Performance is critical: large scale systems, limited by time and space

46

Big Picture: Correctness for Numerical Programs

Numerical programs are hard
▶ Hard to program: multiple kinds of approximation, stability, performance
▶ Hard to debug: hard to tell if answers are wrong, hard to localize and fix bugs

Numerical programs are interesting
▶ Besides FP error: truncation, approximation, iteration, Monte Carlo, . . .
▶ Properties with mathematical/geometrical/physical flavor (e.g., conservation)

Numerical programs are important
▶ From scientific and physical simulation to digital hardware and arithmetic
▶ Correctness is key: important decisions depend on these computations
▶ Performance is critical: large scale systems, limited by time and space

46

Big Picture: Correctness for Numerical Programs

Numerical programs are hard
▶ Hard to program: multiple kinds of approximation, stability, performance
▶ Hard to debug: hard to tell if answers are wrong, hard to localize and fix bugs

Numerical programs are interesting
▶ Besides FP error: truncation, approximation, iteration, Monte Carlo, . . .
▶ Properties with mathematical/geometrical/physical flavor (e.g., conservation)

Numerical programs are important
▶ From scientific and physical simulation to digital hardware and arithmetic
▶ Correctness is key: important decisions depend on these computations
▶ Performance is critical: large scale systems, limited by time and space

46

Interested in Learning More?

Athena-Types
Wiser types for numerical analysis.
https://github.com/Athena-Types

47

Justin Hsu
Cornell University

Type Systems
for Numerical Error Analysis

48

