
Justin Hsu
Cornell University

Type Systems
for Numerical Error Analysis

1



Floating Point (FP) Arithmetic Is Everywhere
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What Do the Floating Point Numbers Look Like?

— https://xkcd.com/899
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What the Floating Point Numbers Actually Look Like

— Sun Microsystems, Inc.
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FP Computations Have Roundoff Error

Can only represent finitely many numbers: F ⊆ R
▶ Number of representable reals depends on precision (double, float, half, etc.)
▶ FP arithmetic operations must round to represent result

FP versions of standard arithmetic operations satisfy:
a ⊕F b = (1 + δ) · (a ⊕R b) + ϵ a ⊗F b = (1 + δ) · (a ⊗R b) + ϵ

Parameters δ, ϵ can depend on a, b, but are bounded by a constant
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Problem: Can We Statically Bound the Amount of Roundoff Error?

Helpful to numerical programmers
▶ Provide guidance on how much precision is needed
▶ Identify sources of error, reason about error propagation

Long history of verification methods
▶ Abstract interpretation, interval arithmetic (e.g., Gappa, PRECiSA)
▶ SMT-based approaches (e.g., Daisy, Rosa)
▶ Global optimization, semi-definite programming (e.g., FPTaylor, Real2Float)
▶ Interactive theorem proving (e.g., Isabelle/HOL, VCFloat)
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Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7



Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7



Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7



Three Main Challenges

Scalability
▶ Precise reasoning about floating-point error is expensive
▶ SMT and optimization-based approaches: hours for 10s of operations

Accuracy
▶ Bounds on error are more useful if they are tight: not too conservative
▶ Interval-arithmetic approaches scalable, but often loose bounds

Expressiveness
▶ Most tools support absolute error, but relative error is more natural
▶ Target programs are limited: often straight-line programs

7



Today: the NumFuzz Type System for Bounding FP Error

• Goal: Forward Error Analysis

• Ingredient 1: Sensitivity Analysis

• Ingredient 2: Error Analysis
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Joint Work with Excellent Coauthors!

Ariel Kellison Laura Zielinski David Bindel
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Forward Error Analysis:
A Quick Introduction
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Goal: Bound the Distance between Ideal and Approximate
A given program P can be executed ideally or approximately (FP)
▶ For program P , define ideal JP Kid and approximate (FP) JP Kfp semantics
▶ Example: Jx ⊕ yKid is exact (real) addition, while Jx ⊕ yKfp is FP addition

Forward error: maximum distance between JP Kid and JP Kfp on same input

a ∈ A b ∈ B

b̃ ∈ B

JP Kid

JP Kfp

Forward error: δ
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Question 1: How Is Error Introduced?

Not all operations introduce floating-point error
▶ Primitive arithmetic operations: introduce floating-point error
▶ Other “regular” operations (assignment, pairing, projection, etc.): no FP error

Error-producing operations depend on application, compiler, hardware, . . .
▶ Example: multiply-add versus fused multiply-add
▶ Want flexibility to model different kinds of error-producing operations
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Question 2: How Do Error Bounds Compose?

Example: P has forward error δ and Q has forward error ϵ

a ∈ A b ∈ B c ∈ C

b̃ ∈ B

c̃ ∈ C

JP Kid

JP Kfp

JQKid

δ

???

JQKfp

Bound error by showing Lipschitz guarantee for ideal behavior JQKid
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Ingredient 1:
Sensitivity Analysis
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Fuzz: A Linear Type System for Sensitivity Analysis

A functional programming language
▶ Lambda calculus with pairs, enums, functions, lists, recursive datatypes, etc.
▶ Support for higher-order functions and patterns (e.g., maps, folds)

A linear type system based on Bounded Linear Logic
▶ Each type is equipped with a metric
▶ Type system tracks sensitivity of each variable via number of uses

Originally: verifying differential privacy (Reed and Pierce, 2010)
▶ Later: other notions of privacy, generalizing to effects and “coeffects”, etc.
▶ Efficient typechecking (linear in size of program), few annotations required
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Example: Numeric Types

Numbers under absolute distance numabs

▶ Carrier set: elements of numabs drawn from real numbers R
▶ Metric: standard distance d(a, b) ≜ |a − b|

Numbers under relative distance numrel

▶ Carrier set: elements of numrel drawn from non-negative reals R+

▶ Metric: relative distance d(a, b) ≜ |ln(a) − ln(b)| = |ln(a/b)|
▶ Known as the relative precision (RP) distance (Olver, 1978)

16



Example: Numeric Types

Numbers under absolute distance numabs

▶ Carrier set: elements of numabs drawn from real numbers R
▶ Metric: standard distance d(a, b) ≜ |a − b|

Numbers under relative distance numrel

▶ Carrier set: elements of numrel drawn from non-negative reals R+

▶ Metric: relative distance d(a, b) ≜ |ln(a) − ln(b)| = |ln(a/b)|
▶ Known as the relative precision (RP) distance (Olver, 1978)

16



Example: Numeric Types

Numbers under absolute distance numabs

▶ Carrier set: elements of numabs drawn from real numbers R
▶ Metric: standard distance d(a, b) ≜ |a − b|

Numbers under relative distance numrel

▶ Carrier set: elements of numrel drawn from non-negative reals R+

▶ Metric: relative distance d(a, b) ≜ |ln(a) − ln(b)| = |ln(a/b)|
▶ Known as the relative precision (RP) distance (Olver, 1978)

16



The RP Distance: A Closer Look

What does RP measure?
RP distance at most ϵ means points differ by at most exp(ϵ) ≈ (1 + ϵ) factor:

RP (a, b) ≤ ϵ ⇐⇒ |ln(a/b)| ≤ ϵ ⇐⇒ exp(−ϵ) ≤ a/b ≤ exp(ϵ)

Why does RP involve logarithms?
RP distance satisfies the triangle inequality:

▶ Given: RP (a, b) ≤ ϵ and RP (b, c) ≤ δ

▶ By definition: |ln(a) − ln(b)| ≤ ϵ and |ln(b) − ln(c)| ≤ δ

▶ Triangle inequality: |ln(a) − ln(c)| ≤ ϵ + δ

▶ Thus by definition: RP (a, c) ≤ ϵ + δ.
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Example: Richer Datatypes

Tuples of numbers
▶ Sum of distances (L1 metric): num ⊗ · · · ⊗ num
▶ Max of distances (L∞ metric): num & · · · & num

Products and Sums
▶ Two kinds of products (pairs) A ⊗ B and A & B

▶ Sums (enums) have type A + B (either an A or a B)

Functions
▶ (Linear) functions from A to B have type A ⊸ B

▶ All linear functions are non-expansive (1-Lipschitz)
▶ More generally: !rA ⊸ B is type of r-sensitive functions for r ∈ R or ∞
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Example: Typing Addition

Under absolute metric: take sum of changes in input (⊗)

add : numabs ⊗ numabs ⊸ numabs

Change arguments by ϵ and δ absolute: change result by ϵ + δ absolute.

Under relative precision: take max of changes in input (&)

add : numrel & numrel ⊸ numrel

Change arguments by exp(ϵ), exp(δ) factors: change result by exp(max(ϵ, δ)) factor.
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Example: Typing Multiplication

Under absolute metric: not Lipschitz (“sensitivity is ∞”)

mul : !∞(numabs ⊗ numabs) ⊸ numabs

Change arguments by ϵ and δ absolute: change result by unbounded amount.

Under relative precision: take sum of changes input (⊗)

mul : numrel ⊗ numrel ⊸ numrel

Change arguments by exp(ϵ), exp(δ) factors: change result by exp(ϵ + δ) factor.
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Typing Judgments and Soundness in Fuzz
Judgments record sensitivity with respect to each variable
▶ Contexts: lists of variables with type and sensitivity r ∈ R

Γ = x1 :r1 A1, . . . , xn :rn An

▶ Judgments: program has a type in a context

x1 :r1 A1, . . . , xn :rn An ⊢ e : B

Soundness theorem (Reed and Pierce, 2010)
Suppose x :r A ⊢ e(x) : B. Then for any two values a1, a2 : A, we have:

dB(e(a1), e(a2)) ≤ r · dA(a1, a2).

In other words, well-typed programs e are r-Lipschitz functions.
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Categorical Summary: Sensitivity Analysis

Category EPMet of Extended Pseudo-metric Spaces
▶ Extended: metric can assign distance infinity
▶ Pseudo: don’t require reflexivity, distance between distinct points can be zero
▶ Morphisms: non-expansive (“short”) maps

Good category for linear logic
▶ Symmetric monoidal closed structure (⊗,⊸)
▶ Cartesian structure (not closed), coproducts

Graded comonad from scaling
▶ Functors !r : EPMet → EPMet take (A, d) to (A, r · d)
▶ R≥0-graded exponential comonad (Brunel, Gaboardi, Mazza, Zdancewic 2014)
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Ingredient 2:
Error Analysis
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From Fuzz to NumFuzz: A Type for Tracking Error

So far: types describe data and metric, but not error
▶ Goal: extend types with quantitative error bounds
▶ Get static bounds on amount of roundoff error by inferring types

Idea: add a new family of error types Errδ(A)
▶ A is any type, and δ ∈ R is a numeric bound
▶ Think: pairs (a, ã) : A × A of exact and approximate values, dA(a, ã) ≤ δ.
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Typing Rules: Introducing Error

An ideal computation produces no error

Γ ⊢ e : A

Γ ⊢ ret(e) : Err0(A)

Rounding operation can generate error

Γ ⊢ e : numrel

Γ ⊢ rnd(e) : Erru(numrel)

Error parameter u depends on particular setting (precision, rounding mode, etc.).
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Sequencing: Key Interaction between Error Types and Sensitivity
Composing two functions
▶ Program P has forward error δ, and ideal semantics is r-sensitive
▶ Program Q has forward error ϵ, and ideal semantics is s-sensitive
▶ Composition P ; Q should have forward error s · δ + ϵ

In pictures

a ∈ A b ∈ B c ∈ C

b̃ ∈ B • ∈ C

c̃ ∈ C

JP Kid

JP Kfp

JQKid

δ s·δ

s·δ+ϵ
JQKid

JQKfp

ϵ
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Typing Rule: Sequencing

Assuming that:
▶ Program P has forward error δ, and ideal semantics is r-sensitive

x :r A ⊢ P (x) : Errδ(B)

▶ Program Q has forward error ϵ, and ideal semantics is s-sensitive

y :s B ⊢ Q(y) : Errϵ(C)

Conclude that:
▶ Composition P ; Q should have forward error s · δ + ϵ

x :r·s A ⊢ bind y = P (x) in Q(y) : Errs·δ+ϵ(C)
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Interpreting the Error Type:
The Graded Neighborhood Monad
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Neighborhood Monad: A Graded Monad on EPMet
Grades: (R≥0, 0, +)
▶ Monoid of non-negative real numbers under addition
▶ Think: upper bound on distance between ideal and approximate

Family of functors: {Er : EPMet → EPMet}
▶ Er takes (A, d) to metric space of pairs:

{(a, ã) ∈ A × A | d(a, ã) ≤ r}

Distance on pairs: distance d between first (ideal) components.
▶ Er takes f : A → B to:

Er(f)(a, ã) = (f(a), f(ã))

Since f is non-expansive, this is a map from Er(A) to Er(B).
29



Neighborhood Monad: Unit and Multiplication

Graded unit map
▶ Think: ideal value equal to the approximate value
▶ Unit map ηA : A → E0A defined as:

A ∋ a 7→ (a, a) ∈ E0A

Graded multiplication map
▶ Think: the “ideal” ideal value, and the “approximate” approximate value
▶ Graded multiplication map µr,s,A : ErEsA → Er+sA defined as:

ErEsA ∋ ((a, ã), (b, b̃)) 7→ (a, b̃) ∈ Er+sA

Relies crucially on triangle inequality.
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ErEsA ∋ ((a, ã), (b, b̃)) 7→ (a, b̃) ∈ Er+sA

Relies crucially on triangle inequality.

30



Neighborhood Monad: Other Structures

Graded strengths: interaction with products in EPMet
▶ Maps str,A : A ⊗ ErB → Er(A ⊗ B) defined as:

A ⊗ ErB ∋ (a, (b, b̃)) 7→ ((a, b), (a, b̃)) ∈ Er(A ⊗ B)

▶ Similar map for Cartesian product A × B.

Graded distributive law: interaction with scaling comonad
▶ Key map: λr,s,A :!rEsA → Es·r!rA

▶ Cf. Gaboardi, Katsumata, Orchard, Breuvart, Uustalu (2016)
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NumFuzz:
Example Programs
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Example: Arithmetic Operations
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Example: Defining Correctly-Rounded Operations

Addition

addfp(a, b) ≜ let z = add(a, b) in rnd(z)

Multiplication

mulfp(a, b) ≜ let z = mul(a, b) in rnd(z)

Types of FP operations: type of ideal operation, plus rounding
▶ Upshot: cleanly separate ideal operation from rounding behavior
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Example: Multiply-then-add

Compute a ⊗ b ⊕ c as FP multiply, then FP add

ma(a, b, c) ≜ bind m = mulfp(a, b) in
bind n = addfp(m, c) in
ret(n)

Overall type computed from types of FP operations
▶ As expected: incur error from two rounding operation
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Example: Fused multiply-add (FMA)

Compute a ⊗ b ⊕ c: Exact multiply, then exact add, then round

fma(a, b, c) ≜ let m = mul(a, b) in
let n = add(m, c) in
rnd(n)

Overall type computed from types of exact operations and round
▶ As expected: incur error from one rounding operation
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Soundness Theorem: the Error Type Bounds the Forward Error

Define two operational semantics: ideal and approximate (FP)
▶ e ⇓id v means: e evaluates to v under ideal semantics
▶ e ⇓fp v means: e evaluates to v under FP semantics

Theorem (error soundness)
Suppose ⊢ e : Errδ(num) is a well-typed program. Then e ⇓id vid and e ⇓fp vfp, and
dnum(vid, vfp) ≤ δ. Note: holds for numabs or numrel.
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NumFuzz:
Empirical Evaluation
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Prototype Implementation of NumFuzz

Build on prior implementations of Fuzz
▶ Modified an existing OCaml implementation of DFuzz

Requires minimal annotations
▶ Just need to annotate types of function arguments (but not sensitivities)

Efficient type checking/inference algorithm
▶ Automatically infers error types Errδ(A), including error bound δ

▶ Algorithm just involves counting usages, no optimization or SMT
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Good Performance for Relative Error on Standard Benchmarks
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Scales to Large Programs
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Infers Tight Bounds on Relative Error
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Current Directions
and Conclusions
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Backward Error Analysis

More subtle notion of error in numerical analysis (Wilkinson, 1950s)
▶ Forward error: how much does ideal output differ from approximate output?
▶ Backward error: is the approximate output exactly correct for a nearby input?

Bean: A Language for Backward Error Analysis (PLDI 2025)
▶ A mixed linear/non-linear type system for backward error analysis
▶ Semantics in a novel category of error lenses (cf. bidirectional programming)
▶ First fully automated analysis for backward error, scales to large programs
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More Details in the Papers!

Numerical Fuzz: A Type System for Rounding Error Analysis (PLDI 2024)
▶ More about the semantics, extensions of error monad to other effects
▶ Details about implementation, many more benchmarks

Current directions
▶ Supporting subtraction: not Lipschitz sensitive
▶ Reasoning about underflows/subnormals? Running-error bounds?
▶ Neighborhood monad: can we generalize?
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Big Picture: Correctness for Numerical Programs

Numerical programs are hard
▶ Hard to program: multiple kinds of approximation, stability, performance
▶ Hard to debug: hard to tell if answers are wrong, hard to localize and fix bugs

Numerical programs are interesting
▶ Besides FP error: truncation, approximation, iteration, Monte Carlo, . . .
▶ Properties with mathematical/geometrical/physical flavor (e.g., conservation)

Numerical programs are important
▶ From scientific and physical simulation to digital hardware and arithmetic
▶ Correctness is key: important decisions depend on these computations
▶ Performance is critical: large scale systems, limited by time and space
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Interested in Learning More?

Athena-Types
Wiser types for numerical analysis.
https://github.com/Athena-Types
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