Reasoning about External Calls using Object Capabilities

Sophia Drossopoulou, Imperial College London

WG 2.3 Athens, 19th May 2025

James Noble

Susan Eisenbach

Julian Mackay

External and Internal Code is tightly intertwined. Object Capabilities used to control External Effects

Our Remit

Reason about Object Capabilities controling Effects: 1) Specification, 2) Verification

The Problem

Internal (trusted) and External (untrusted) objects are intertwined.

Capability objects (ocap) are necessary for certain effects.

Internal Calls: Internal, or external objects call methods on internal objects.

External Calls: Internal objects may call methods on external objects.

What are the possible effects at the external call?

1) Some effects will never happen cf. object invariants

2) Some effects may happen — but only if external access to certain capabilities. **Our Work**

class Shop

field accnt:Account, invntry:Inventory, clients:external

public method buy(buyer:external, anItem:Item) int price = anItem.price int oldBlnce = this.accnt.blnce buyer.pay(this.accnt, price) if (this.accnt.blnce == oldBlnce+price) this.send(buyer,anItem) else buyer.tell("you have not paid me")

What are the possible effects at the external call?

- **Q** Can buyer steal money from the shop's account?
- a) Money not reduced unless external access to account's key A No, if
 - b) Buyer has no access to account's key
 - c) Module does not leak the account's key

Some effects may happen - but only if

1st Attempt

2nd Attempt

Current Attempt

S ::= $\neg A \land \neg$ Anec "is invariant"

some condition/access to ocap

No logic

<e,e'>

lyl<mark>f</mark> Anec lyThrough Anec

Logic, only internal calls

rot<e,e'>

Logic, external calls

The Account example in Code

(fields are private)

module M_{good} class Shop ... as earlier ... class Account field blnce:int field key:Key public method transfer(dest:Account, key':Key, amt:nat) if (this.key==key') this.blnce-=amt; dest.blnce+=amt public method set(key':Key) if (this.key==null) this.key=key'

module M_{bad} ... as earlier ... public method set(key':Key) this.key=key'

module M_{fine} ... as earlier ... public method set(key',key'':Key) if (this.key==key') this.key=key''

The trouble is ... the emergent behaviour

Mbad

- Attacker calls set (...) and changes the password 1)
- 2) Attacker calls transfer (...) and uses password to withdraw money

Parity MultiSig Wallet Hack (150,000 ETH (~30M USD) 2017)

- 1) Attacker calls initWallet (...) and makes themselves the single owner
- 2) Attacker calls execute (...) and withdrawns all funds

module M_{bad}
... as earlier ...
public method set(key':Key)
this.key=key'

module M_{fine}
 ... as earlier ...
 public method set(key',key'':Key)
 if (this.key==key') this.key=key''

module M_{bad}
... as earlier ...
public method set(key':Key)
this.key=key'

class Shop

field accnt:Account, invntry:Inventory, clients:external

	public method
	int price =
Remit 3 [.] An inference syst	int oldBlnc
rterint_0 . / the interestion by St	buyer.pay(t
externa	if (this.ac
CALCINC	this.sen
	else
	buyer.te

count comes from a "good" module, and ayer has no "unprotected" access to 4.accnt.pwd,

buyer.payme(..) will not decrease 4.accnt.blnce,

In Summary

External Objects

- may have access to internal objects
- may execute arbitrary code
- may invoke any public internal method
- may collude with one another
- may not directly read/write internal fields

Our Specifications

- In genereal do *not* preclude these conditions

- guarantee that certain effects happen only under certain conditions

Remit_1: A specification language, $M_{good} \vDash S$ $M_{bad} \not\models S$ $M_{fine} \models S$

We want to give formal meaning to

Effect (E) can be caused

- and
- only if the causing object has access to capability.

Assume that effect E invalidates assertion A. Then, we could formalize (*) through $A \wedge$ "no external access to OCAP" is "invariant"

We need to determine

(*)

- "no external access to OCAP"
- "invariant"

- only by external objects calling methods on internal objects,

- "no external access to OCAP"
- "invariant"

1st Answer

- No external objects exist.

- "no external access to OCAP"
- "invariant"

2nd Answer

- No external objects exist.
- No external objects created.

3 1 C

Too Strong!

- "no external access to OCAP"
- "invariant"

3rd Answer

No external object has direct access to OCAP

- "no external access to OCAP"
- "invariant"

4th Answer

- No external object has direct access to OCAP.
- No inrernal objects leak capability to OCAP.

o OCAP.)CAP.

- "no external access to OCAP"
- "invariant"

5th Answer

- No currently accessible external object has direct access to OCAP.
- No internal objects leak access to OCAP. A preserved in external states (this is external object), invariant during execution of current call

Our Approach!

Remit_1_a : Express/Meaning of: No *currently accessible* external object has direct accees to o

Def: o protected

≪o≫ ∧ [this ext \Rightarrow o not an arg]

Protection increases as we push frames

 \land \forall o'. [o' extl \land o' reachble from top frame \Rightarrow \forall f. [o''. f \neq o]]

Protection is "relative" to top frame

o protected from o' Def: $\langle 0 \rangle \not\leftarrow o' = \forall o'' \circ o'' \circ$

- ...⊨≪2≫ ↔ 1
-⊭ ≪2≫ ↔ 3

- $\dots \models \ll C \gg \nleftrightarrow 1$
- ...⊨ ≪C» ↔ 3⊭ ≪C» ↔ 2

$A ::= e \mid e : C \mid \neg A \mid A \land A \mid \forall x : C A \mid e : extl \mid \langle e \rangle \leftrightarrow e \mid \langle e \rangle$

We propose "scoped invariants", of the form $\forall x_1:C_1,...,x_n:C_n \{A\}$

 \forall s:Shop.{ s.account \neq null \rightarrow \langle s.account \mid hore \rangle Eg

Definition

 $\mathsf{M} \models \forall \mathsf{x}_1: \mathsf{C}_1, \dots, \mathsf{x}_n: \mathsf{C}_n \{\mathsf{A}\} \triangleq \forall \mathsf{M}' . \forall \sigma, \sigma' . \forall \alpha_1, \dots, \alpha_n . \mathsf{A}_n$

M, $\sigma' \models A[\alpha_1, \dots, \alpha_n / x_1, \dots, x_n]$

An example:

Consider call graph below, with green disks for internal states (eg o₂), and pink disks for external states (eg o₂₈).

$M \models \forall x:C. \{A\}$ means that M, σ

An example:

Consider call graph below, with green disks for internal states (eg o₂), and pink disks for external states (eg o₂₈).

$\mathsf{M} \vDash \forall \mathsf{x}:\mathsf{C}. \{\mathsf{A}\} \text{ means that} \qquad \mathsf{M}, \, \sigma_{\scriptscriptstyle 4} \vDash \alpha:\mathsf{C} \land \mathsf{A}[\alpha/\mathsf{x}]$

implies

 $\begin{array}{l} \mathsf{M}, \, \sigma_{\scriptscriptstyle 5} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 6} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 10} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 10} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 10} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 11} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 11} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 17} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 18} \vDash \mathsf{A}[\alpha/\mathsf{x}] \\ \mathsf{M}, \, \sigma_{\scriptscriptstyle 18} \vDash \mathsf{A}[\alpha/\mathsf{x}] \end{array}$

Challenge_1: A module spec S, such that $M_{good} \models S$ Mbad \nvDash S Mfine \models S

- S1 $\triangleq \forall$ a:Account. { $\langle \langle a \rangle \rangle$ }
- S2 $\triangleq \forall$ a:Account. { $\langle a.key \rangle$ }
- S4 $\triangleq \forall$ a:Account, b:Num. { «a.key » \land a.blnce \geq b }
- S5 \triangleq { \ll this.accnt.key $\gg \nleftrightarrow$ buyer \land this.accnt.blnce = b } Shop::buy(buyer:external, item:ltem) { this.accnt.blnce \geq b }

Mbad ⊭ S2 Mbad \nvDash S4 Mgood ⊭ºS1 Mbad \nvDash S1

API - agnostic: a.blnce, a.key can be ghost

Talk about effects

Talk about emergent behaviour

Mgood \models S2 \land S4 \land S5

Mfine \models S2 \land S4 \land S5 Mfine \nvDash S1

Remember Parity MultiSig Wallet Hack

Parity MultiSig Wallet Hack (150,000 ETH (~30M USD) 2017)

- 1) Attacker calls initWallet (...) and makes themselves the single owner
- 2) Attacker calls execute (...) and withdrawns all funds

An implementation that satisfies the below avoids the hack (assuming governed by the votes of the owners}

- S10 $\triangleq \forall$ msig:Multisig, o:Address.{ $o \in$ msig.owner}
- S11 $\triangleq \forall$ msig:Multisig, o:Address { $o \in$ msig.owner $\land \langle \langle o \rangle \rangle$ }
- \forall msig:Multisig, o:Address, v:Vote { o \in msig.owner $\land \langle \langle o \rangle \rangle$ \land msig. S12 ≜
- S13 $\triangleq \forall$ msig:Multisig, o:Address, f:Funds

The owner set only grows

No owner is leaked

Nobody can vote on behalf of others

> No change of funds unless all owners agreed

 $\{ o \in msig.owner \land \langle o \rangle \land msig.votes(o)=NO \land msig.funds = f \}$

In the context of arbitrary, unlimited calls from internal to external, and arbitrary, unlimited calls from external to internal.

Assume an underlying Hoare logic of triples with usual meaning

1st stage Expand it to Hoare logic of triples with usual meaning

2nd Stage Expand triples to quadruples

Which promises that

- termination of s leads to a state satisfying A'
- intermediate external states satisfy A"

3rd Stage Rules for module satisfying a specification

Three Stages

- $M \vdash_{ul} \{A\} s \{A'\}$

 $M \vdash \{A\} \ s \ \{A'\}$

 $M \vdash \{A\} s \{A'\} \parallel \{A''\};$

 $M \vdash S$

We extend some underlying Hoare logic to a Hoare logic of triples with usual meaning

EXTEND $M \vdash_{ul} \{A\}$ s $\{A'\}$ s contains no method call $M \vdash \{A\} \ s \{A'\}$ TYPES-1 s contains no method call

 $M \vdash \{x : C\} \ s \ \{x : C\}$

1st stage

We expand triples to quadruples

TYPI

M

 $\frac{M \vdash \{A_1\} s \{}{N}$

SEQU $M \vdash \{A_1\}$

CONSEQU $M \vdash \{A_2\} s \{A_3\} \parallel \{A_4\}$

2nd stage

$$\frac{M \vdash \{A\} s \{A'\}}{M \vdash \{A\} s \{A'\} \parallel \{A''\}}$$

$$\begin{array}{c} \text{ES-2} \\ M \vdash \{A\} \ s \ \{A'\} \ \parallel \ \{A''\} \\ \hline + \ \{x : C \land A\} \ s \ \{x : C \land A'\} \ \parallel \ \{A''\} \\ \hline \\ \hline \{A_2\} \ \parallel \ \{A\} \qquad M \vdash \ \{A_3\} \ s \ \{A_4\} \ \parallel \ \{A\} \\ \hline \\ M \vdash \ \{A_1 \land A_3\} \ s \ \{A_2 \land A_4\} \ \parallel \ \{A\} \\ \hline \\ \hline \\ M \vdash \ \{A_1\} \ s_1; \ s_2 \ \{A_3\} \ \parallel \ \{A\} \\ \hline \\ \hline \\ M \vdash \ \{A_1\} \ s_1; \ s_2 \ \{A_3\} \ \parallel \ \{A\} \\ \hline \\ \hline \\ M \vdash \ \{A_2\} \ s \ \{A_5\} \ \parallel \ \{A_6\} \\ \end{array}$$

34

We introduce triples for protection

$$[PROT-NEW]$$

$$u \neq x$$

$$M \vdash \{ true \} u = new C \{ \langle u \rangle \land \langle u \rangle \leftrightarrow x \}$$

$$[PROT-2]$$

$$stmt is either x := y \text{ or } x := y.f, \text{ and } z, z' \neq x$$

$$M \vdash \{ z = e \land z' = e' \} stmt \{ z = e \land z' = e' \}$$

$$M \vdash \{ \langle e \rangle \leftrightarrow e' \} stmt \{ \langle e \rangle \leftrightarrow e' \}$$

$$[PROT-3]$$

$$K \neq z$$

$$M \vdash \{ \langle y.f \rangle \leftrightarrow z \} x = y.f \{ \langle x \rangle \leftrightarrow z \}$$

$$[PROT-NEW] \qquad [PROT-1]$$

$$u \neq x \qquad [PROT-1]$$

$$M \vdash \{ true \} u = new C \{ \langle u \rangle \land \langle u \rangle \leftrightarrow x \} \qquad [PROT-2]$$

$$stmt \text{ is either } x := y \text{ or } x := y.f, \text{ and } z, z' \neq x$$

$$M \vdash \{ z = e \land z' = e' \} stmt \{ z = e \land z' = e' \}$$

$$M \vdash \{ \langle e \rangle \leftrightarrow e' \} stmt \{ \langle e \rangle \leftrightarrow e' \} \qquad [PROT-3]$$

$$K \vdash \{ \langle y.f \rangle \leftrightarrow z \} x = y.f \{ \langle x \rangle \leftrightarrow z \}$$

$$M \vdash \{ \langle x \rangle \leftrightarrow z \land \langle x \rangle \leftrightarrow y' \} y.f = y' \{$$

2nd stage

[PROT-4]

 $\langle x \rangle \leftrightarrow z \}$

Challenge_2: An inference system, such that ...

WellFrm_Mod $M \vdash \mathscr{S}pec(M)$ $\vdash M$

3rd stage

Comb_Spec $M \vdash S_1$ $M \vdash S_2$ $M \vdash S_1 \land S_2$

Challenge_2: An inference system, such that ...

. .

•

???

3rd stage

Challenge_2: An inference system, such that ...

Protection is "relative" to a frame; Our $-\nabla$ operator helps us switch to callee's view INVARIANT $M \vdash \{ \text{this}: D, y: D, x: C \land A \land A \neg \forall (\text{this}, \overline{y}) \} stmt \{ A \land A \neg \forall \text{res} \} \parallel \{ A \}$ $M \vdash \forall x : C.\{A\}$

Remit_3: An inference system, such that we can prove external calls

Challenge_4: An inference system, such we can prove external calls

$M \vdash \{ y_0 : \mathsf{ext} \}$

[Call_Ext]

y ??? } $u := y_0.m(y_1,...y_n) \{ ??? \} \parallel \{??\}$

Challenge_4a: From Caller to Callee

We consider Shop's method pay, and want to prove the external call, ie { buyer:extl \land (this.accnt.key) \leftrightarrow buyer \land this.accnt.blnce = b } buyer.pay(this.accnt, price) { this.accnt.blnce $\geq b$ } ... We want to use S4, ie \forall a:Account, b:Num. { «a.key » \land a.blnce \geq b } φ₁ ⊭ **《1**》 AHA!! to use S4, we only need BUT, ϕ_{1} , callee $\models \ll 1 \gg$ ••• $\phi_1 \phi_2 \models \langle \langle 1 \rangle \rangle$ Indeed, 1:Key 5: Therefore, we need an operator which mediates asserions Buyer between viewpoint of the callee and viewpoint of caller. this ф2: | 2:Acc this

6:...

4:Shop.

Challenge_4a: From Caller to Callee — The $-\nabla$ operator

 ∇ translates an assertion from the view of the callee to that of the caller.

Definition 6.1. [The
$$\neg \nabla$$
 operator]
 $\langle e \rangle \neg \nabla \overline{y} \triangleq \langle e \rangle \leftrightarrow \overline{y}$ $(A_1 \land A_2) \neg \nabla \overline{y} \triangleq (A_1 \neg \nabla \overline{y}) \land (A_2 \neg \nabla \overline{y})$
 $(\langle e \rangle \leftrightarrow \overline{u}) \neg \nabla \overline{y} \triangleq \langle e \rangle \leftrightarrow \overline{u}$ $(\forall x : C.A) \neg \nabla \overline{y} \triangleq \forall x : C.(A \neg \nabla \overline{y})$
 $(e : extl) \neg \nabla \overline{y} \triangleq e : extl$ $(\neg A) \neg \nabla \overline{y} \triangleq \neg (A \neg \nabla \overline{y})$
 $e \neg \nabla \overline{y} \triangleq e$ $(e : C) \neg \nabla \overline{y} \triangleq e : C$

Example: \ll this.accnt.key $\gg -\nabla$ buyer =

(2)
$$M, \sigma \models A \neg Rng(\phi)$$

(3) $M, \sigma \lor \phi \models A \land extl$

«this.accnt.key» + buyer

Lemma 6.2. For states σ , assertions A, so that $Stb^+(A)$ and $Fv(A) = \emptyset$, frame ϕ , variables y_0, \overline{y} :

$$\implies M, \sigma \lor \phi \models A$$
$$\implies M, \sigma \models A - \forall Rng(\phi)$$

Challenge_4a: From Caller to Callee — The $-\nabla$ operator

Example: \ll this.accnt.key $\gg -\nabla$ buyer =

(2)
$$M, \sigma \models A - \nabla Rng(\phi)$$

(3) $M, \sigma \nabla \phi \models A \wedge \text{extl}$

- Protection is "relative" to a frame;
- ∇ operator switches assertion to callee's viewpoint

$$(\neg A) - \nabla \overline{y} \triangleq \neg (A - \nabla \overline{y})$$
$$(e:C) - \nabla \overline{y} \triangleq e:C$$

«this.accnt.key» + buyer

Lemma 6.2. For states σ , assertions A, so that $Stb^+(A)$ and $Fv(A) = \emptyset$, frame ϕ , variables y_0, \overline{y} :

$$\implies M, \sigma \lor \phi \models A$$
$$\implies M, \sigma \models A - \forall Rng(\phi)$$

Challenge_4: An inference system, such we can prove external calls

$M \vdash \{ y_0 : \mathsf{ext} \}$ 1

[Call_Ext]

 $u := y_0.m(y_1,..,y_n) \{ ?? \} \| \{?? \}$

Challenge_4: An inference system, such we can prove external calls

$[CALL_ExT]$ $\vdash M : \forall \overline{x : D} \{A\}$ $M \vdash \{ y_0 : ext \land \overline{x : D} \land A \neg \overline{y} \} u := y_0.m(y_1, ..y_n) \{ A \neg \overline{y} \} \parallel \{A\}$

Using [Call_Ext] we can, indeed, prove

buyer.pay(this.accnt,price) { this.accnt.blnce $\geq b$ }...

{ buyer:extl \land (this.accnt.key) \leftrightarrow buyer \land this.accnt.blnce = b }

Using our quadruples, we have proven

- Mgood \vdash S2 \land S4 \land S5
- Mfine \vdash S2 \land S4 \land S5

Moreover, we have proven

- $\vdash M \implies M \models S$

\vdash M \land M \vdash {A} stmt {A'} || {A''} \Rightarrow M \models {A} stmt {A'} || {A''}

 Specifications talk about necessary conditions for effect: $\forall x: \dots \{ \langle e \rangle \land A \}$ means that A is preserved as long as **capability** e is ptotected

- API-agrnositc spec,
- "Algorithmic" inference system system,
- Reason with open calls

Summary

Distinction between external/internal objects

• «e »: expresses that e is protected from reachable external objects

• Protaction, $\langle e \rangle$ relative to frame. Use $-\nabla$ to switch view

- Frame-related concepts
 - Protected object
 - Scoped Invarinats
 - $\circ \nabla$ to switch view to callee frame
- Started with necessary conditions,
- Started with temporal logics, but ended up using invariants
- Hoare logic extensions
- Invariants twenty years later …

Surprises

but ended up using *sufficient conditions* to reason about them

A Unified Framework for Verification Techniques for Object Invariants

S. Drossopoulou⁽¹⁾, A. Francalanza⁽²⁾, P. Müller⁽³⁾, and A. J. Summers⁽¹⁾

⁽¹⁾ Imperial College London,

⁽²⁾ University of Southampton,

⁽³⁾ Microsoft Research, Redmond

Abstract. Object invariants define the consistency of objects. They have subtle semantics because of call-backs, multi-object invariants and subclassing. Several visible-state verification techniques for object in-

Tool

- Mechanize proofs
 - **Completeness**?
 - **Revisit protection:**
 - What if more than one capability for an effect?
 - Ownership types, membranes etc?
 - Instance-level protection?
 - assertions rather than objects to protect
- Other programming Paradigms (Ethereum, ECMAscript)
- Better interaction with underlying Hoare logics

Thank You!

