Reasoning about External Calls
using Object Capabilities

Sophia Drossopoulou, Imperial College London
WG 2.3 Athens, 19th May 2025

James Noble Susan Eisenbach Julian Mackay

| .- T
e =4

! p 14
| p47?

‘Mw‘;

e ————
- -) A

The Problem

External and Internal Code is tightly intertwined.

Object Capabilities used to control External Effects

Our Remit

Reason about Object Capabilities controling Effects:
1) Specification, 2) Verification

-(trusted) and -(untrusted) objects are intertwined.

-objects (ocap) are necessary for certain effects.

4\

Internal Calls: Internal, or external objects call methods on internal objects.

o V. XN
‘ <V

External Calls: Internal objects may call methods on external objects.

AR
g .. &

module M;,
method ml
trusted code
method m2 (untrst:external)

trusted code
untrst.unkn(this)

trusted code

What are the possible effects at the external call?

1) Some effects will never happen cf. object invariants

2) Some effects may happen — but only if external access to certain capabilities.

class Shop
field accnt:Account, invntry:Inventory, clients:external

public method buy (buyer:external, anlItem:Item)
int price = anltem.price
int oldBlnce = this.accnt.blnce
buyer.pay (this.accnt, price) .
1f (this.accnt.blnce == oldBlnce+
this.send (buyer,anlItem)
else
buyer.tell ("you have not paid me")

.) ‘l,
~a0
®) l v
Q
-
=
B\

price)

What are the possible effects at the external call?
Q Can buyer steal money from the shop’s account?

A No, if a) Money not reduced unless external access to account’s key
b) Buyer has no access to account’s key

c) Module does not leak the account’s key

somgefféetsimay happen — butenlyif - some|condition/access to ocap

1st Attempt

= ... | A->A | WilliAS | was<A> | ext<e> | acc<e.e’>

2nd Attempt No logic

-|A->A [[extce> | |ace<ee>

S =
_-— —— g

only internal calls
Current Attempt

A :=...| ext<e>| prot<e>| prot<e,e’> Logic

S = T A A AneC “iS invariant” eXtema| Ca”S

8

The Account example in Code

(fields are private)

Three Modules

module Mgood
class Shop ... as earlier
class Account -
field blnce:int
field key:Key
public method transfer (dest:Account, key':Key, amt:nat)
if (this.key==key') this.blnce—-=amt; dest.blnce+=amt

public method set (key':Key)
if (this.key==null) this.key=key'

module Mp,4 module Mfipe
as earlier as earlier
public method set (key':Key) public method set (key',key'':Key)

this.key=key' 1f (this.key==key') this.key=key''

10

The trouble Is ... the emergent behaviour

Mbad
1) Attacker calls set (...) and changes the password

2) Attacker calls transfer (...) and uses password to withdraw money

Parity MultiSig Wallet Hack (150,000 ETH (~30M USD) 2017)

1) Attacker calls initwallet (..) and makes themselves the single owner

2) Attacker calls execute (...) and withdrawns all funds

11

Three Modules

module Mgood
class Shop ... as earlier
class Accou
field bln
field key:
public me

if (thi

public me

if (thi

module Mp g4 module Mfine
as earlier as earlier
public method set (key':Key) public method set (key',key'':Key)

this.key=key" if (this.key==key') this.key=key''

12

Three Modules

module Mgood
class Shop ... as earlier
class Accou
field bln
field key:
public me

if (thi

public me

if (thi

module Mp g4 module Mfine
as earlier as earlier
public method set (key':Key) public method set (key',key'':Key)

this.key=key" if (this.key==key') this.key=key''

13

Three Modules

class Shop

field accnt:Account, invntry:Inventory, clients:external

public method
int price =
int oldBlnc
buyer.pay (t
if (this.ac
this.sen

else
buyer.te

f a) Account comes from a “good” module, and
D) buyer has no “unprotected” access to 4.accnt . pwd,

then
buyer.payme (..) Wil not decrease 4.accnt.blnce,

14

In Summary

External Objects

- may have access to internal objects

- may execute arbitrary code

- may invoke any public internal method
- may collude with one another

- may not directly read/write internal fields

Our Specifications
- guarantee that certain effects happen only under certain condtions
- In genereal do not preclude these conditions

15

16

We want to give formal meaning to

Effect (E) can be caused
(*) - only by external objects calling methods on internal objects,
and
- only if the causing object has access to capabillity.

Assume that effect E invalidates assertion A.

Then, we could formalize (*) through
A A “no external access to OCAP” is “invariant”

We need to determine

- “no external access to OCAP”
- “Invariant”

We now determine
- “no external access to OCAP”

1st Answer

- No external objects exist.

18

We now determine
- “no external access to OCAP”

2nd Answer

- No external objects exist.

- No external objects created.

19

We now determine

- “no external access to OCAP”
- “Invariant”

3rd Answer

- No external object has direct access to OCAP

Unsound!

20

We now determine

- “no external access to OCAP”
- “Invariant”

4th Answer

- No external object has direct access to OCAP.

- No inrernal objects leak capability to OCAP.

Too strong!

21

We now determine

- “no external access to OCAP”
Invariant

5th Answer

- No currently accessible external object has direct access to OCAP.

- No internal objects leak access to OCAP.

invariant % preserved in external states (this is external object),
during execution of current call

22

Remit_1 _a : Express/Meaning of: No external object has direct accees to o

Protection increases as we
push frames

Def: o protected

0» 2 V o[o extl Ao reachble from top frame = Vf[o"fzo]]
A [thisextl =onotanarg |

D1 ¥~ CY D1 = CH»
D1 ¥ £2» DD = «2)
OFEIE D O1D: = (1)

Protection is “relative” to top frame

Def: o protected from o’

Oy ¥ 0" 2 Vo"[o0"extlA0"reachble fromo = Vf[o".fzo]]

S EL2Y T
o L2 3

W ELCY & 1
W ELCY & 3

o LGy & 2

A == e|e:C|-A|AAA]|Vx:CA | e:extl | (e)xe | (e)

Remit_1_b : Express/meaning “invariant’

We propose “scoped invariants”, of the form VvV x1:C1,...Xn:Cn { A}

Eg V s:Shop. { s.account #null — { s.account ¥~

Any number of execution steps,
Definition before returning from current frame

ME VX1:Cq,.. XniCh {A} & VM.Vo,o. Vaq,...an

M, o= this: ext A a1 :Cq,...an:Cn A Alaq,...0n /7 Xq,..Xn]
A MeM, o~*0

A M,0 =this: ext

M, o' & Alaq,...an/ X1,..Xn]

26]

An example:

Consider call graph below, with green disks for internal states (eg (),
and pink disks for external states (eg @).

ME VX:.C.{A} means that

27

M7 O,

= a.C A Ala/X]

Implies

M, o,
M, o,

= Ala/X]

= Ala/X]

An example:

Consider call graph below, with green disks for internal states (eg @),

and pink disks for external states (eg @ .

ME VXx:C. { A} means that M, 0, = a:C A Ala/X]
|‘\/ ‘.\/ |\/
oo ¢é

o0
, §©
9

o

28

o0 O
¢ 00

<

M%@
®

implies

M, o,
M, o,
M, o,
M, o,
M, o,
M, o,
M, O,
M, o,

= Ala/X]

= Ala/X]
= Ala/X]
= Ala/X]
= Ala/X]
= Ala/X]
= Ala/X]
= Ala/X]

API - agnostic:

Challenge _1: A module spec S, such that a.bince, a.key can be ghost

Mgood E S
Mbad ¥ S
Mfine = S

Talk about effects
S1 2 V a:Account. { €a) }

S2 2 WV a:Account. { €a.key)}

|I>

S4 VvV a:Account, b:Num. { €a.key » A a.blnce = b}

Talk about

S5 2 { (this.accnt.key » ¢ buyer A this.accnt.bince =b } emergent behaviour

Shop::buy(buyer:external, item:ltem)
{ this.accnt.blnce = b}

Mpad H S2 Mpad H S4 Mgo()d S2 NS4 A S5 Mfine ES2 A S4 A S5
Mbad ¥ S1 Mgood 79 S 1 Mfine £ S1

-

The owner set
only grows

Remember Parity MultiSig Wallet Ha

Parity MultiSig Wallet Hack (150,000 ETH (~30M USD) 2017)

1) Attacker calls initWallet (..) and makes themselves the singie owner
No owner is

2) Attacker calls execute (...) and withdrawns all funds leaked

An implementation that satisfies the below avoids the hack (assuinira i

governed by the votes of the owners} Nobody can vote
on behalf of others

S10 ¢ V msig:Multisig, 0:Address.{ o € msig.owner }
No
change of funds

S12 & V msig:Multisig, o:Address, v:Vote { 0 € msig.owner A 0y A msig. unless all owners
agreed

S11 ¢ V msig:Multisig, 0:Address { 0 € msig.owner A €0» }

S13 ¢ V msig:Multisig, o:Address, f:Funds

{ 0 € msig.owner A €0» A msig.votes(0)=NO A msig.funds =f }

30

In the context of arbitrary, unlimited calls from internal to external,
and arbitrary, unlimited calls from external to internal.

31

Challenge 2: An inference system, such that ...

Three Stages
Assume an underlying Hoare logic of triples with usual meaning Mry {A}Ys{A")}
1st stage Expand it to Hoare logic of triples with usual meaning M+ {A}s{A"}

2nd Stage Expand triples to quadruples
. . M {A}s{A"} || {A"}
Which promises that ’

- termination of s leads to a state satisfying A’
- Intermediate external states satisfy A”

3rd Stage Rules for module satisfying a specification MES

32

Challenge 2: An inference system, such that ...

1st stage

We extend some underlying Hoare logic to a Hoare logic of triples with usual meaning

EXTEND
Mry {A}s{A"} scontains no method call

M#r {A}s{A"}

TYPES-1
s contains no method call

M*Er {x:C}s{x:C}

33

Challenge 2: An inference system, such that ...

2nd stage

INV

We expand triples to quadruples ME {A}s{A")

Mr {A}s{A"} || {A"}

TYPES-2

M#r {A}s{A"} || {A"}
M£r {x:CANA}s{x:CANA"} || {A”}

M+ {A}s{A} || {A} M {As}s{As} || {A}
M {A1ANA3}s{A2NAL} || {A}
SEQU
M+ {A}si{A} || {A} M+ {Ay}s; {As}A
M+ {A1}si;s2{As}) || {A}
CONSEQU
M {Az}S{A3} || {A4} MI-A1 —)Az MI-A3—)A5 MI-A4—>A6

MF {A}s{As} || {As}

34

Challenge 2: An inference system, such that ...

2nd stage
We introduce triples for protection
[PROT-NEW] [PrOT-1]
txt stmt is free of method cals, or assignment to z
UFx M+t {e=z}stmt{e=2z}
Mr—{true}uznewC{(u)/\(u)eéx} Ml—{(e)}stmt{(e)}
[PROZZ] [PROT-3]
stmt is either x :=yorx :=y.f,and 2,2’ # x o
Mbr {z=eANZ =¢ }stmt{z=eANZ =€} —
Ml—{(e)ﬁ(—e’}stmt{(e)@(—e’} MF{(yf)QGZ}X—yf{(X)(*Z}
[PROT-4]

M {{x)exz A{x)exy' Yy f=y { {(x)exz}

35

3rd stage

WELLFRM_MoD CoMB_SPEC
M v SFpec(M) M+ S ME S,

F M MES{AS

36

3rd stage

INVARIANT

??7?

M+ Vx : C{A}

37

Challenge 2: An inference system, such that ...

Protection is “relative” to a frame;
Our —\/ operator

helps us switch to callee’s view

INVARIANT

M V¥ Encps(x:C AN A)
- VD,m: mBody(m,D,M)=public (y:D){stmt} =
M¥Fr {this:D,y:D,x:C AN AANA—~V(this,y) }stmt{ AANA~vres } || { A}

M+ Vx:CA{A}

38

39

[CALL_EXT]

M F {yp:ext , 222 tu=yom(y,.ya) { 2722 } | {??}

40

Challenge_4a: From Caller to Callee

We consider Shop’s method pay,

and want to prove the external call, ie

{ buyer:extl A {(this.accnt.key)e¢ buyer A this.accnt.blnce=5 }
buyer.pay (this.accnt,price)
{ this.accnt.blnce >b } ..

We want to use S4, ie

BUT, 0

thlS
P2: \

~ 1)

1:Key

2:Acc

4 Shop

VvV a:Account, b:Num. { €a.key » A a.blnce = b}

AHA! to use S4, we only need ¢1,callee = 1) (&2
Indeed, P12 = <1y (&

Therefore, we need an operator which mediates asserions
between viewpoint of the callee and viewpoint of caller.

41

Challenge 4a: From Caller to Callee — The —\/ operator

\ translates an assertion from the view of the callee to that of the caller.

Definition 6.1. [The —v operator]

(e)vy = (e)oxy (A1 ANA2)Vy = (A1VYy) A (A2VY)
({e)exu)vy = (e)yexu (Vx:C.A)Vvy = Vx:C.(AVy)
(e:extl)Vy = e:extl (mA)vy = -(A-Vy)
evVy = e (e:C)vy = e:C
Example: this.accnt.key®» —\/ buyer = this.accnt.key) 4 buyer

Lemma 6.2. For states o, assertions A, so that Stb*(A) and Fo(A) = 0, frame ¢, variables y,, y:

(2) M,0 E A~VRng(9) — M,0VpEFA
3) M,ocvd FAANextl — M,0 F A-~VRng(9)

42

Challenge 4a: From Caller to Callee — The —\/ operator

translates ' ' '
V transla Protection is “relative” to a frame;

\/ operator switches assertion to callee’s viewpoint

(L€~)
(e:extl)Vy = e:extl (mA)Vy = -—(A-Vy)
evVy = e (e:C)~vy = e:C
Example: this.accnt.key)» —\/ buyer = this.accnt.key) 4 buyer

Lemma 6.2. For states o, assertions A, so that Stb*™(A) and Fo(A) = 0, frame ¢, variables y,, y:

(2) M,0 E A~VRng(9) — M,0VpEFA
3) M,cvp FAAextl = M,ocFE A-~VRng(¢)

43

[CaLL_ExT]

M+ { yo:ext , Yu=yom(yy,.yn) { 2722 } |l {77}

44

[CaLL_ExT]

F M : Vx:D{A}

M¥rA{y:ext Ax:D ANAVY }u=yom(y,.yn) { A~vy } || { A}

45

Using [Call_Ext] we can, indeed, prove

- -\ " = 4L —— -7 X7 - - - - - = - T T I - - T T T T

{ buyer:extl A (thls accnt. key)ee buyer A thlS accnt.blnce=5> }

buyer.pay(this.accnt,price)
{ this.accnt.blnce>b } ..

46

Using our quadruples, we have proven

Mngd - S2 A S4 A S5

Mfine F+ S2 A S4 A S5

Moreover, we have proven

M A M+ {Alstmt{A}||{A} = M F {A}stmt{A} || {A"}

— M = M E S

47

* Distinction between external/internal objects

» {e »: expresses that e is protected from reachable external objects

» Specifications talk about necessary conditions for effect:
VX ...{€<&e)y ANA}

means that A is preserved as long as capability e is ptotected

* APl-agrnositc spec,
* “Algorithmic” inference system system,
* Reason with open calls

e Protaction, e » relative to frame. Use —\/ to switch view

48

Surprises

Frame-related concepts
O Protected object
o Scoped Invarinats

o \/ to switch view to callee frame

Started with necessary conditions,

but ended up using sufficient conditions to reason about them

Started with temporal logics,
but ended up using invariants

Hoare logic extensions

Invariants — twenty years later ...

49

A Unified Framework for
Verification Techniques for Object Invariants

S. Drossopoulou(?), A. Francalanza(®, P. Miiller®, and A. J. Summers(!)

(1) Imperial College London,
(2) University of Southampton,
(3) Microsoft Research, Redmond

Abstract. Object invariants define the consistency of objects. They

have subtle semantics because of call-backs, multi-object invariants and
snhelassine. Several visihle-state verification technianes for ohiect in-

* Modules
 Mechanize proofs
e Completeness?
* Revisit protection:
— What if more than one capability for an effect?
— Ownership types, membranes etc?
— Instance-level protection?
NQXt S — assertions rather than objects to protect
e Other programming Paradigms (Ethereum, ECMAscript)

* Better interaction with underlying Hoare logics

e Tool

50

d of next week

