
 Reasoning about External Calls 
using Object Capabilities

Julian MackayJames Noble Susan Eisenbach

Sophia Drossopoulou, Imperial College London

1

WG 2.3 Athens, 19th May 2025

The Problem
External and Internal Code is tightly intertwined.

Object Capabilities used to control External Effects

 
Our Remit 

Reason about Object Capabilities controling Effects: 
1) Specification, 2) Verification

2

 Internal (trusted) and External (untrusted) objects are intertwined.

1:Key

2:Acc

4:Shop

3:Bal

5:…

7:…

6:…

 Capability objects (ocap) are necessary for certain effects.

1:Key

2:Acc

4:Shop

3:Bal 7:…

6:…

Internal Calls: Internal, or external objects call methods on internal objects.

5:…

1:Key

2:Acc

4:Shop

3:Bal

5:…

7:…

6:…

External Calls: Internal objects may call methods on external objects.

6

 

What are the possible effects at the external call?

1) Some effects will never happen 

2) Some effects may happen — but only if external access to certain capabilities.

cf. object invariants

Our Work

7

What are the possible effects at the external call?

Q Can buyer steal money from the shop’s account?

1:Key

2:Acc

4:Shop

Buyer

A No, if a) Money not reduced unless external access to account’s key 
b) Buyer has no access to account’s key
c) Module does not leak the account’s key

8

Some effects may happen — but only if some condition/access to ocap

1st Attempt

2nd Attempt
A ::= … | A->A | ext<e> | acc<e,e’>

S ::= from Apre to Apost onlyIf Anec |  
 from Apre to Apost onlyThrough Anec  

Current Attempt

A ::= … | A->A | will<A> | was<A> | ext<e> | acc<e,e’>

S ::= ￢ A ⋀ ￢ Anec “is invariant” 

No logic

Logic, 
only internal calls

Logic, 
external calls

A ::= … | ext<e> | prot<e> | prot<e,e’>

The Account example in Code

9

(fields are private)

Three Modules

10

1:K

2:A

4:S

3:B

5:…

The trouble is … the emergent behaviour

11

 

Mbad

1) Attacker calls set(…) and changes the password

2) Attacker calls transfer(…) and uses password to withdraw money

Parity MultiSig Wallet Hack (150,000 ETH (~30M USD) 2017)

 1) Attacker calls initWallet(…) and makes themselves the single owner

 2) Attacker calls execute(…) and withdrawns all funds

Three Modules

12

1:K

2:A

4:S

3:B

5:…

Remit_1: A module spec S, such that

 Mgood ⊨ S
 Mbad ⊭ S
 Mfine ⊨ S

Three Modules

13

1:K

2:A

4:S

3:B

5:…

Remit_2: An inference system with which to prove

 Mgood ⊢ S
 Mbad ⊬ S
 Mfine ⊢ S

Three Modules

14

Remit_3: An inference system with which to prove

 external calls

If a) Account comes from a “good” module, and
 b) buyer has no “unprotected” access to 4.accnt.pwd,
then
 buyer.payme(..) will not decrease 4.accnt.blnce,

1:K

2:A

4:S

3:B

5:…

15

- may have access to internal objects

- may execute arbitrary code

- may invoke any public internal method

- may collude with one another

External Objects

- may not directly read/write internal fields

In Summary

Our Specifications
- guarantee that certain effects happen only under certain condtions
- In genereal do not preclude these conditions

16

Remit_1: A specification language,

 and module spec S, such that
 Mgood ⊨ S
 Mbad ⊭ S
 Mfine ⊨ S

We want to give formal meaning to

Effect (E) can be caused  
 - only by external objects calling methods on internal objects, 
 and

 - only if the causing object has access to capability.

We need to determine

 - “no external access to OCAP” 
  
 - “invariant”

Assume that effect E invalidates assertion A. 
Then, we could formalize (*) through 
 A ∧ “no external access to OCAP” is “invariant”

(*)

18

We now determine

 - “no external access to OCAP” 
  
 - “invariant”

1st Answer

Unsound!

21

C

- No external objects exist.

19

We now determine

 - “no external access to OCAP” 
  
 - “invariant”

2nd Answer

Too Strong!

- No external objects exist.

- No external objects created.

21

C

3

20

We now determine

 - “no external access to OCAP” 
  
 - “invariant”

3rd Answer

Unsound!

- No external object has direct access to OCAP

21

C

3

21

We now determine

 - “no external access to OCAP” 
  
 - “invariant”

4th Answer

Too strong!

- No external object has direct access to OCAP.
- No inrernal objects leak capability to OCAP.

21

C

3

22

We now determine

 - “no external access to OCAP” 
  
 - “invariant”

5th Answer

Our Approach!

- No currently accessible external object has direct access to OCAP.
- No internal objects leak access to OCAP.

invariant

invariant ≜ preserved in external states (this is external object),

  during execution of current call 21

C

3
φ2:

4φ1:

21

C

3
φ2:

4 ….. …

21

C

3

4φ1:

Def: o protected
 ≪o≫

 Φ1 ⊭ ≪1≫ Φ1Φ2 ⊨ ≪1≫

Remit_1_a : Express/Meaning of: No currentlly accessible external object has direct accees to o

  
 ≜ ∀ o’.[o’ extl ∧ o’ reachble from top frame ⇒ ∀f.[o’’.f≠o]] 
 ∧ [this extl ⇒ o not an arg]

Protection increases as we
push frames

 Φ1 ⊭ ≪C≫
 Φ1Φ2 ⊭ ≪2≫21

C

3

4φ1:

 Φ1 ⊭ ≪2≫
 Φ1Φ2 ⊨ ≪C≫

21

C

3
φ2:

4φ1: Protection is “relative” to top framethis

Def: o protected from o’ 
 ≪o≫ ↚ o’

 … ⊨ ≪2≫ ↚ 1

 … ⊭ ≪2≫ ↚ 3

We also define …

 ≜ ∀o’’.[o’’ extl ∧ o’’ reachble from o’ ⇒ ∀f.[o’’.f≠o]]  

 … ⊭ ≪C≫ ↚ 2

21

C

3

4φ1:

 … ⊨ ≪C≫ ↚ 1
 … ⊨ ≪C≫ ↚ 3

Assertions may talk of protection and externals

∀M’.∀σ, σ’. ∀𝛼1,…𝛼n.[ 

 M, σ ⊨ this: ext ∧ 𝛼1 :C1,…𝛼n:Cn ∧ A[𝛼1,…𝛼n / x1,..xn]  

Definition  
  
 M ⊨ ∀x1:C1,…xn:Cn { A }

26

⇒

≜

M’●M, σ ↝* σ’

 M, σ’ ⊨ this: ext  

]

∧

∧

 M, σ’ ⊨ A[𝛼1,…𝛼n / x1,..xn]  

 Remit_1_b : Express/meaning “invariant”

We propose “scoped invariants”, of the form ∀x1:C1,…xn:Cn { A }

Eg ∀s:Shop. { s.account	≠ null → ≪ s.account.key≫ }

Any number of execution steps,
before returning from current frame

27

σ1

σ3 σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ20

σ11 σ12

σ13 σ14

σ15 σ16

σ17 σ18

σ19

σ21

σ23 σ24

σ22 σ26 σ28

σ30

͢͢

͢

͢

͢

͢

͢

͢

͢

͢ ͢

↓

↑

↑

↑

↑

↑

↓

↑

↑

↓

↓

↓

↓

↓

M ⊨ ∀x:C. { A } means that
 M, σ10 ⊨ 𝛼:C ∧ A[𝛼/x]  

σ2

σ28

An example:

Consider call graph below, with green disks for internal states (eg),

 and pink disks for external states (eg).

σ2

͢

implies M, σ11 ⊨ A[𝛼/x]  
 M, σ12 ⊨ A[𝛼/x]  

✔ ✔ ✔✔ ✔✔

28

σ1

σ3 σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ20

σ11 σ12

σ13 σ14

σ15 σ16

σ17 σ18

σ19

σ21

σ23 σ24

σ22 σ26 σ28

σ30

͢͢

͢

͢

͢

͢

͢

͢

͢

͢ ͢

↓

↑

↑

↑

↑

↑

↓

↑

↑

↓

↓

↓

↓

↓

M ⊨ ∀x:C. { A } means that

σ2

σ28

An example:

Consider call graph below, with green disks for internal states (eg),

 and pink disks for external states (eg).

σ2

͢

✔ ✔ ✔

M, σ4 ⊨ 𝛼:C ∧ A[𝛼/x]   implies M, σ5 ⊨ A[𝛼/x]  
 M, σ6 ⊨ A[𝛼/x]  
 M, σ10 ⊨ A[𝛼/x]  
 M, σ10 ⊨ A[𝛼/x]  
 M, σ11 ⊨ A[𝛼/x]  
 M, σ17 ⊨ A[𝛼/x]  
 M, σ18 ⊨ A[𝛼/x]  
 M, σ20 ⊨ A[𝛼/x]

✔

✔

✔✔

✔✔

✔

✔

Challenge_1: A module spec S, such that
 Mgood ⊨ S
 Mbad ⊭ S
Mfine ⊨ S

S1 ≜ ∀ a:Account. { ≪a≫ }

API - agnostic:
a.blnce, a.key can be ghost

Talk about effects

Talk about
emergent behaviour

29

S2 ≜ ∀ a:Account. { ≪a.key ≫ }

S4 ≜ ∀ a:Account, b:Num. { ≪a.key ≫ ∧ a.blnce ≥ b }

Mbad ⊭ S2 Mbad ⊭ S4 Mgood ⊨ S2 ∧ S4 ∧ S5 Mfine ⊨ S2 ∧ S4 ∧ S5

S5 ≜ { ≪this.accnt.key ≫ ↚ buyer ∧ this.accnt.blnce =b }

 Shop::buy(buyer:external, item:Item) 
 { this.accnt.blnce ≥ b }

Mbad ⊭ S1 Mgood ⊭ S1 Mfine ⊭ S1

30

Remember Parity MultiSig Wallet Hack …
Parity MultiSig Wallet Hack (150,000 ETH (~30M USD) 2017)

 1) Attacker calls initWallet(…) and makes themselves the single owner

 2) Attacker calls execute(…) and withdrawns all funds

S10 ≜ ∀ msig:Multisig, o:Address.{ o ∈ msig.owner }

An implementation that satisfies the below avoids the hack (assuming the mutlisig is
governed by the votes of the owners}

S12 ≜ ∀ msig:Multisig, o:Address, v:Vote { o ∈ msig.owner ∧ ≪o≫ ∧ msig.votes(o)=vote }

S11 ≜ ∀ msig:Multisig, o:Address { o ∈ msig.owner ∧ ≪o≫ }

The owner set
only grows

No owner is
leaked

No
change of funds
unless all owners

agreed
S13 ≜ ∀ msig:Multisig, o:Address, f:Funds 
 { o ∈ msig.owner ∧ ≪o≫ ∧ msig.votes(o)=NO ∧ msig.funds = f }

Nobody can vote
on behalf of others

Challenge_2: An inference system, such that

 Mgood ⊢ S
 Mbad ⊬ S

 Mfine ⊢ S

31

In the context of arbitrary, unlimited calls from internal to external, 
 and arbitrary, unlimited calls from external to internal. 

Challenge_2: An inference system, such that …

32

Three Stages

1st stage Expand it to Hoare logic of triples with usual meaning

2nd Stage Expand triples to quadruples  

Which promises that  
 - termination of s leads to a state satisfying A’ 
 - intermediate external states satisfy A’’  

Assume an underlying Hoare logic of triples with usual meaning

3rd Stage Rules for module satisfying a specification  

Challenge_2: An inference system, such that …

33

1st stage

We extend some underlying Hoare logic to a Hoare logic of triples with usual meaning

Challenge_2: An inference system, such that …

34

2nd stage

We expand triples to quadruples

Challenge_2: An inference system, such that …

35

2nd stage

We introduce triples for protection

Challenge_2: An inference system, such that …

36

3rd stage

Challenge_2: An inference system, such that …

37

???

3rd stage

Challenge_2: An inference system, such that …

38

Protection is “relative” to a frame;
Our —▽ operator

helps us switch to callee’s view

Remit_3: An inference system, such that
we can prove external calls

39

Challenge_4: An inference system, such we can prove external calls

40

??? ?????

41

1:Key

2:Acc

4:Shop

5:
Buyer

6:…φ1: this
…

We want to use S4, ie ∀ a:Account, b:Num. { ≪a.key ≫ ∧ a.blnce ≥ b }

BUT, φ1 ⊭ ≪1≫ AHA!! to use S4, we only need φ1,callee ⊨ ≪1≫ 😅🙇
Indeed, φ1 φ2 ⊨ ≪1≫ 😁

φ2:

1:Key

2:Acc

4:Shop

5:
Buyer

6:…φ1: this
…

this
…

Therefore, we need an operator which mediates asserions

between viewpoint of the callee and viewpoint of caller.

 Challenge_4a: From Caller to Callee

 We consider Shop’s method pay, and want to prove the external call, ie

42

▽ translates an assertion from the view of the callee to that of the caller.

 Challenge_4a: From Caller to Callee — The —▽ operator

 Example: ≪this.accnt.key≫ —▽ buyer = ≪this.accnt.key≫ ⍅ buyer

43

▽ translates an assertion from the view of the callee to that of the caller.

 Challenge_4a: From Caller to Callee — The —▽ operator

 Example: ≪this.accnt.key≫ —▽ buyer = ≪this.accnt.key≫ ⍅ buyer

Protection is “relative” to a frame;

▽ operator switches assertion to callee’s viewpoint

Challenge_4: An inference system, such we can prove external calls

44

??? ??

Challenge_4: An inference system, such we can prove external calls

45

46

Using [Call_Ext] we can, indeed, prove

1:Key

2:Acc

4:Shop

5:
Buyer

6:…φ1: this
…

47

Using our quadruples, we have proven

Mgood ⊢ S2 ∧ S4 ∧ S5

 Mfine ⊢ S2 ∧ S4 ∧ S5

Moreover, we have proven

⊢ M ⋀ M ⊢ {A} stmt {A’} || {A’’} ⇒ M ⊨ {A} stmt {A’} || {A’’}

⊢ M ⇒ M ⊨ S

Summary

•Distinction between external/internal objects

•≪e ≫: expresses that e is protected from reachable external objects

•Specifications talk about necessary conditions for effect: 
 ∀ x: … { ≪e ≫ ∧ A } 
means that A is preserved as long as capability e is ptotected

•API-agrnositc spec,

• “Algorithmic” inference system system,

•Reason with open calls 

•Protaction, ≪e ≫ relative to frame. Use —▽ to switch view  

 

48

Surprises

Frame-related concepts

Protected object

Scoped Invarinats

▽ to switch view to callee frame 

Started with necessary conditions,  
but ended up using sufficient conditions to reason about them  

Started with temporal logics,  
but ended up using invariants  

Hoare logic extensions

Invariants — twenty years later … 

49

Next …

• Modules 

• Mechanize proofs  

• Completeness? 

• Revisit protection: 
— What if more than one capability for an effect?  
— Ownership types, membranes etc? 
— Instance-level protection? 
— assertions rather than objects to protect 

• Other programming Paradigms (Ethereum, ECMAscript) 

• Better interaction with underlying Hoare logics 

• Tool 
 

50

51

Thank You!

by the end of next week.

