Correctly Programming
Remote Direct Memory Access (RDMA)
IFIP 2.3

Athens 2025
Brijesh Dongol’

with Guillaume Ambal?, Gregory Chockler', Haggai Eran?,
Vasileios Klimis*, Ori Lahav®, Azalea Raad?, Viktor Vafeiadis®

"University of Surrey, 2lmperial College London, , SNVIDIA,
4Queen Mary University of London, ®Tel Aviv University, EMPI-SWS

Brijesh Dongol Semantics of RDMA 1/38

Problem: Slow communication (TCP/IP)
The 7 Layers of OSI

Transmit Receive
Data Data
Application (Layer 7)

Presentation (Layer 6)

Session (Layer 5)

Transport (Layer 4)
Network (Layer 3)

Data Link (Layer 2)

Physical (Layer 1)

s Physical Link #

Latency : ~ ms

Brijesh Dongol Semantics of RDMA

Problem: Slow communication (TCP/IP)
The 7 Layers of OSI

Transmit Receive
Data Data
Application (Layer 7)

Presentation (Layer 6)

Session (Layer 5)

Transport (Layer 4)

Too slow for modern distributed applications Network (Layer 3)

@ datacenters Data Link (Layer 2)

@ cloud servers
. Physical (Layer 1)
@ in-memory databases
@ HPC systems s Physical Link #
@ distributed Al training / federated ML
o ofc Latency : ~ ms

Brijesh Dongol Semantics of RDMA 2/38

Remote Direct Memory Access (RDMA)

RDMA NIC
CPU

PCle
root
complex

Memory

Remote Direct Memory Access (RDMA)

FOUARIG]—-----~ [FOMA NG|
¢

CPU CPU
PCle PCle
root root
complex complex
Memory Memory

Brijesh Dongol Semantics of RDMA 3/38

Remote Direct Memory Access (RDMA)
* ------------ >

CPU CPU
PCle PCle
root root
complex complex
Memory Memory

@ Directly read from / write to remote memory
@ Zero-copy kernel bypass
@ Latency: ~ us

@ Recently becoming more widespread — Infiniband and RoCE

Brijesh Dongol Semantics of RDMA 3/38

Remote Direct Memory Access (RDMA)
* ------------ >

CPU CPU
PCle PCle
root root
complex complex
Memory Memory

@ Directly read from / write to remote memory

@ Zero-copy kernel bypass

@ Latency: ~ us

@ Recently becoming more widespread — Infiniband and RoCE
@ But:

» Complex semantics described via informal technical manuals
» Buggy implementations

Brijesh Dongol Semantics of RDMA 3/38

Remote Direct Memory Access (RDMA)
[RDMANIC [« ---------- - ~[RDMA NIC]

CPU t ! CPU
PCle PCle
root root
complex complex
Memory ‘ Memory

Our work: EPSRC project “SACRED-MA: Safe And seCure REmote Direct Memory Access”
@ Investigators: Brijesh Dongol, Gregory Chockler (Surrey); Azalea Raad (Imperial);
@ Post Docs: Guillaume Ambal (Imperial) and ??? (Surrey);

@ Partners: NVIDIA (formerly Mellanox), Arm, Tel Aviv University, Cornell, Max Planck Institute,
Uni. Colorado Boulder

Brijesh Dongol Semantics of RDMA 3/38

Our work

Formalising RDMA semantics (assuming TSO for the CPU)

@ Operational semantics

@ Declarative semantics

© Semantics proved equivalent
© Empirical validation

OOPSLA 2024: Ambal, Dongol, Eran, Klimis, Lahav, Raad

. P Under submission:
LOCO library verification
° orary veriicat } Ambal, Chockler, Dongol, Raad, Vafeiadis

Brijesh Dongol Semantics of RDMA 4/38

RDMAT™S?: RDMA + Total Store Order (TSO)

[Thread 1] -~ [Threadm| [RDMANIC|«------------ ~[RDMANIC| [Thread 1] - [Thread m
E PCle PCle €
= root root =
(e complex complex =
73 7

Memory

Memory

Brijesh Dongol Semantics of RDMA 5/38

Programming Model and Syntax

Model:
@ network with several nodes
@ each node can have several threads

Syntax

Mem Locs x,y,z,...
Nodes n,nqy,no, ns,...
Commands c:= x:=e|r:=x |mfence]... + usual TSO
x":=y|x:=y"|poll(n)|... + RDMA

Brijesh Dongol Semantics of RDMA 6/38

Programming Model and Syntax

Model:
@ network with several nodes
@ each node can have several threads

Syntax

Mem Locs x,y,z,...
Nodes n,nqy,no, ns,...
Commands c:= x:=e|r:=x |mfence]... + usual TSO
| x":=y|x:=y"|poll(n)]|... + RDMA

Write x := y for X" := y when n is uniquely identifiable (similarly x := y)

Brijesh Dongol Semantics of RDMA 6/38

RDMATSC Architectures

[Thread 1] -~ [Threadm| [NIC|«---------
¥
= E PCle
= £ root
@ o complex
2 &
\ Memory \

In detail, RDMA connection is through Queue Pairs from one thread to another

PCle
root
complex

St. Buff. 1

St. Buff. m

Memory

req. ' ing
\ =3 Queue grows this wayi ==
St. Buff. : whp
l [
1
[Memoy [«— | < [Wemory
wb, rsp. 1 outg
1

Brijesh Dongol Semantics of RDMA

7/38

Example 1: Local write — Remote write

Brijesh Dongol Semantics of RDMA

x
|

Nt X
Il
X —

9/38

Thread 1

A

St. Buff. [+

>
I
o

N X<
Il
X —

Mem 1

Mem 2

9/38

Thread 1

A

St. Buff. [+

>
I
o

N X<
Il
X —

Mem 2

9/38

>
I
o

N X<
Il
X —

Mem 1

Mem 2

9/38

Thread 1
S
Q) z:=x
Nnlx =1
X

x
|
o

N X<
Il
X —

Mem 1

Mem 2

9/38

>
I
o

N X<
Il
X —

Mem 1

Mem 2

9/38

Thread 1

A

St. Buff. [+

>
I
o

N X<
Il
X —

Mem 1

Mem 2

9/38

x=0||z="?

Thread 1

A 1 X = 1

_ Z:=X
5
m
n

X z

Mem 1 Mem 2

9/38

x=0 ||z="?
Thread 1
A 1 X = 1
_ Z:=X
5
m
&
X z
Mem 1 Mem 2

9/38

Thread 1

A

St. Buff. [+

>
I
o

N X<
Il
X —

Mem 1

Mem 2

9/38

Thread 1

A

St. Buff. [+

>
I
o

N X<
Il
X —

Mem 1

Mem 2

9/38

St. Buff. [+

>
I
o
N
I
N

N X<
Il
X —

z=0X
z=1V

Mem 1 Mem 2

9/38

Example 2: Remote Write from Local — Local Write

Brijesh Dongol Semantics of RDMA

x
|
o

x Nt
Il
- X

11/38

Thread 1

A

St. Buff. [+

>
I
o

x N
Il
- X

Mem 1

Mem 2

11/38

>
I
o

x N
Il
- X

Mem 1

Mem 2

11/38

Thread 1

A

St. Buff. [+

>
I
o

x N
Il
- X

Mem 1

Mem 2

11/38

Thread 1
E
m

ﬁ' X =1

X Z:=X

x
|
o

x Nt
Il
- X

Mem 1

Mem 2

11/38

Thread 1

A

St. Buff. [+

>
I
o

x N
Il
- X

Mem 1

Mem 2

11/38

x=0||z="?
Thread 1
A 1 ZE = X
- X:=1
5
m
n
X z

Mem 1 Mem 2

11/38

x=0 ||z="?
Thread 1
¥ 1 Z:=x
- X :=1
5
m
&
X z
Mem 1 Mem 2

11/38

Thread 1

A

St. Buff. [+

>
I
o

x N
Il
- X

Mem 1

Mem 2

11/38

Thread 1

A

St. Buff. [+

>
I
o

x N
Il
- X

Mem 1

Mem 2

11/38

x=0||z="?
Thread 1
¥ 1 Z:=x
- X =1
5
i z=0v
@ z=1v
X Z
Mem 1 Mem 2

11/38

Example 3: Remote Write from Local — Poll — Local Write

Brijesh Dongol Semantics of RDMA

13/38

Thread 1

A

St. Buff. [+

Mem 1

Mem 2

13/38

x=0 ||z=?
Z:=X
><_»poll(ng)
x =1
Mem 1

Mem 2

13/38

Thread 1

A

St. Buff. [+

x=0 ||z=?
Z:=X
><_»poll(ng)
x =1
Mem 1

Mem 2

13/38

x=0 |[[z=?
Thread 1 ><—-»E — x
i 1 poll(no)
= X =1
=)
m
n
X Y4

@ Mem 1 Mem 2

13/38

x=0 |[[z=?
Thread 1 ><—-»E — x
i 1 poll(no)
= X =1
=)
m
n
X Y4

@ Mem 1 Mem 2

13/38

Thread 1

A

St. Buff. [+

x=0 ||z=?
Z:=X
><_»poll(ng)
x =1
Mem 1

Mem 2

13/38

Thread 1

A

St. Buff. [+

x=0 ||z=?
Z:=X
><_»poll(ng)
x =1
Mem 1

Mem 2

13/38

x=0 |[[z=?
Thread 1 ><—-»E — x
i 1 poll(no)
= X =1
=)
m
n
X Y4

@ Mem 1 @ Mem 2

13/38

Thread 1

A

St. Buff. [+

x=0 ||z=?
Z:=X
><_»poll(ng)
x =1
Mem 1

Mem 2

13/38

Thread 1

A

St. Buff. [+

Mem 1

Mem 2

13/38

Thread 1

A

St. Buff. [+

Mem 1

Mem 2

13/38

Thread 1

A

St. Buff. [+

II Mem 1

z=0V
z=1X

[] Mem 2

13/38

Problems with RDMATS®

Brijesh Dongol Semantics of RDMA

Problem 1: Message passing needs remote fences

x,y=0
X a=y
y = b:=x
(a,b) =(1,0) v

Brijesh Dongol Semantics of RDMA

Problem 1: Message passing needs remote fences

X,y =0 =0
. 5 _1 ||a=Yy
y _ 1 Z:; X o 1 rfence (Nq)
V= = y=11p—%
(a.b)=(1.0)7 (a.b) = (1,0) X

Brijesh Dongol Semantics of RDMA

Problem 2: Remote operations are highly asynchronous

Brijesh Dongol Semantics of RDMA

Problem 2: Remote operations are highly asynchronous

x=0 ||z=1||ly=2 x=0 ||z=1||y=2
X:=2Z y =X

X:=y X:=7Z

x=1v/ y=0
x=2v y=1v/

Brijesh Dongol Semantics of RDMA

Problem 3: Poll-based synchronisation is very fragile

x=0 ||z=0

Z:=X
poll(ny)
X:=1

z=0v/
z=1X

Brijesh Dongol Semantics of RDMA

Problem 3: Poll-based synchronisation is very fragile

x=0 ||z=0 x=0 ||z=0
Z:=x Z:=x
poll(no) Z:=X
x =1 poll(ny)
X =
z=0v z=0v
z=1X z=1v/

Brijesh Dongol Semantics of RDMA

Problem 3: Poll-based synchronisation is very fragile

x=0 ||z=0
Z:=X
poll(ny)
X =
z=0v/
z=1X

x=0 ||z=0 x=0 ||z=0
Z:=X Z:=X
Z=X Z=X
poll(ny) poll(ny)
x:=1 poll(no)
X =
z=0v/ z=0v/
z=1v z=1X

Brijesh Dongol Semantics of RDMA

17/38

LOCO Libraries

Brijesh Dongol Semantics of RDMA

LOCO abstractions

Barrier Ring buffer
Shared variables Mixed-size writes

@ LOCO (Library of Channel Objects) is a tower of abstractions emulating shared
memory under RDMA (https://arxiv.org/abs/2503.19270)

@ New base memory model RDMAYAT
@ Highly performant and composable

Brijesh Dongol Semantics of RDMA

19/38

https://arxiv.org/abs/2503.19270

LOCO abstractions

Barrier Ring buffer
Shared variables Mixed-size writes

@ LOCO (Library of Channel Objects) is a tower of abstractions emulating shared
memory under RDMA (https://arxiv.org/abs/2503.19270)

@ New base memory model RDMAWAT
@ Highly performant and composable
@ ... BUT... bugs found!

Brijesh Dongol Semantics of RDMA

19/38

https://arxiv.org/abs/2503.19270

LOCO: RDMAWAIT

Brijesh Dongol Semantics of RDMA

R DMAWAIT

Recall:
x=0 |/lz=0

Z:=X

Z:=X

poll(mny)

x:=1
z=0v/
z=1v/

Brijesh Dongol Semantics of RDMA

R DMAWAIT

Recall: wait behaviour:
x=0 ||z=0 x=0 ||z=0
Z:=X z.=9x
Z:=X wait(d)
poll(ny) X =1
X =1
z=0v/ z=0v/
z=1v/ z=1X

Brijesh Dongol Semantics of RDMA

R DMAWAIT

Recall: wait behaviour:
x=0 |/z=0 x=0 ||z=0 x=0 ||lz=0
Z:=X z.=9x Z:=°x
Z:=x wait(d) z:=9x
poll(mny) x:=1 wait(d)
x:=1 X :=1
z=0v z=0v z=0v/
z=1v/ z=1X z=1X

Brijesh Dongol Semantics of RDMA

R DMAWAIT

Recall: wait behaviour:
x=0 |/z=0 x=0 ||z=0 x=0 ||lz=0
Z:=X z.=9x Z:=°x
Z:=X wait(d) z:=9x
poll(mny) x:=1 wait(d)
x:=1 X =1
z=0v z=0v z=0v/
z=1v/ z=1X z=1X

RDMAWYA'T is implemented over RDMATS®

Brijesh Dongol Semantics of RDMA 21/38

Wait and Store Buffering

wait(d) | wait(e)

Brijesh Dongol Semantics of RDMA

Wait and Store Buffering

wait(d) | wait(e)

Brijesh Dongol Semantics of RDMA

Wait and Store Buffering

y=0 x=0

x:=91|y:=°1
wait(d) | wait(e)
a=y ||b:=x

(a,b) = (0,0) v/

wait(-) only guarantees that the write has reached the remote buffer

1
reqr ' ing

| = Queue grows this way| —_—
St. Buff. : wbR
! [HH]
1
| Memory || «— ! Memory
1
1

wb, fSPL outn

Brijesh Dongol Semantics of RDMA 22/38

Fixing Store Buffering with Wait

y=0 x=0

X =1 y =
L=9 1|l =21m
wait(d) ||lwait(e)
a=y b:=x

(a,b) =(0,0) x

e 1 :=9 1 is a zero-length read

Brijesh Dongol Semantics of RDMA

Fixing Store Buffering with Wait

y=0 x=0

X =1 y =
L=9 1|l =2 1m
wait(d) |lwait(e)
a=y b:=x

e 1 :=9 1 is a zero-length read

@ But what if we want to

» synchronise across k nodes, or
» write to multiple nodes?

Brijesh Dongol Semantics of RDMA 23/38

LOCO: Shared Variables

Brijesh Dongol Semantics of RDMA

Shared Variables

m(Vv) ::= Writegy(X, V) | Readsy(X, a) | GFsv({M, ..., Nk})
| BC&Stsv(X, d, {n-] geeey nk}) | waitsv(d)

Idea: A copy of x exists on all nodes

Brijesh Dongol Semantics of RDMA 25/38

Shared Variables

m(Vv) ::= Writegy(X, V) | Readsy(X, a) | GFsv({M, ..., Nk})
| BcaStsv(X, d, {n1 geeey nk}) | waitsv(d)

Idea: A copy of x exists on all nodes
@ Writegy(X, v): modify x locally
@ Readsy(X, a): return the local value of x into a

Brijesh Dongol Semantics of RDMA 25/38

Shared Variables

m(Vv) ::= Writegy(X, V) | Readsy(X, a) | GFsv({M, ..., Nk})
| BcaStsv(X, d, {n1 geeey nk}) | waitsv(d)

Idea: A copy of x exists on all nodes
@ Writegy(X, v): modify x locally
@ Readsy(X, a): return the local value of x into a
® GFsy({m,...,nk}): perform a global fence on given set of nodes

Brijesh Dongol Semantics of RDMA 25/38

Shared Variables

m(V) = WriteSV(X, V) | Readsv(X, a) | GFsv({n1, ey nk})
| BcaStsv(X, d, {n1, ceey nk}) | waitsv(d)

Idea: A copy of x exists on all nodes
@ Writegy(X, v): modify x locally
@ Readsy(X, a): return the local value of x into a
® GFsy({m,...,nk}): perform a global fence on given set of nodes
@ Bcastsy(X,d, {n1,...,Nng}): broadcast x with to nodes with broadcast id d
@ Waitgy(d): wait for broadcast with id d

Brijesh Dongol Semantics of RDMA 25/38

Shared Variables

m(V) = WriteSV(X, V) | Readsv(X, a) | GFsv({n1, ey nk})
| BcaStsv(X, d, {n1, ceey nk}) | waitsv(d)

Idea: A copy of x exists on all nodes
@ Writegy(X, v): modify x locally
@ Readsy(X, a): return the local value of x into a
® GFsy({m,...,nk}): perform a global fence on given set of nodes
@ Bcastsy(X,d, {n1,...,Nng}): broadcast x with to nodes with broadcast id d
@ Waitgy(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables

Brijesh Dongol Semantics of RDMA 25/38

Recall:

Global Fence Behaviour

y=0

x:=91
wait(d)
a=y

y=0

x=0

(a,b) = (0,0) v/

L=91m
wait(d)

| =e i
wait(e)
b:=x

(av b) = (07

0) X

Brijesh Dongol Semantics of RDMA

Global Fence Behaviour

Recall:

y=0
x =91
wait(d)
a=y

(a,b) = (0,0) v/

Brijesh Dongol Semantics of RDMA

y=0

x=0

L=91m
wait(d)

| =e i
wait(e)
b:=x

Global Fence:

y=0

x=0

X =1
GFsv({n2})
a=y

y =1
GFsv({m})
b:=x

(av b) = (O,

0) X

(a,b) = (0,0) X

26/38

LOCO: Shared Variables Implementation

Brijesh Dongol Semantics of RDMA

Shared Variables: Implementation

Shared variable library is implemented over RDMAYA'T

Brijesh Dongol Semantics of RDMA

Shared Variables: Implementation
Shared variable library is implemented over RDMAWA!T

Writegy(X,V) ~ X:=vV
Readgy(Xx,a) ~ a:=x

Brijesh Dongol Semantics of RDMA 28/38

Shared Variables: Implementation
Shared variable library is implemented over RDMAWA!T

Writegy(X,V) ~ X:=vV
Readgy(Xx,a) ~ a:=x
GFsv({M,...,ng}) ~ L =d m.o =9 ;wait(d)

Brijesh Dongol Semantics of RDMA 28/38

Shared Variables: Implementation

Shared variable library is implemented over RDMAWA!T

Writegy(X,V) ~ X:=vV
Readgy(Xx,a) ~ a:=x
GFsv({ny,...,mk}) ~ L:=91M; ;1 :=9 1™ wait(d)
Bcastgy(X, d, {Ny,...,Nk}) ~ x™ =9 X x =9
Waitgy(d) ~» wait(d)

Brijesh Dongol Semantics of RDMA 28/38

Shared Variables: Implementation

Shared variable library is implemented over RDMAWA!T

Writegy(X,V) ~ X:=vV
Readgy(Xx,a) ~ a:=x
GFsv({N1,...,Mk}) ~ L:=9 1M .1 :=9 1™ yait(d)
Beastsy(X, d, {Nq,...,nk}) ~ xM:=9x;. . ;x%.=9x
Waitgy(d) ~» wait(d)

Question: How do we show correctness of the implementation?

Brijesh Dongol Semantics of RDMA 28/38

Declarative Verification Framework

Brijesh Dongol Semantics of RDMA

Declarative Semantics

Ay, 0)] \1WC1 led1 | [w(x,0)},

________-'_,____________q__ _________

o
yac:071 X7d:ov1 “‘
~ ~ ppo ".
xi=c | y=d ;
poll(ng) poll(l’h) pf Irf
a=y | b=x =
ppo /,’
(a.b) = (0.0) / e
ppo
1W(b,0)

Brijesh Dongol

Semantics of RDMA 30/38

Declarative Correctness

Use a declarative (aka axiomatic) style of semantics
@ Define consistency predicate for the specification

@ Prove relationship between implementation and specification via an abstraction
function

Brijesh Dongol Semantics of RDMA 31/38

Declarative Correctness

Use a declarative (aka axiomatic) style of semantics
@ Define consistency predicate for the specification

@ Prove relationship between implementation and specification via an abstraction
function

.. BUT there are many details:

@ Compositionality: Consistency for a program using a set of libraries

@ Subevents: Need relations at a finer granularity than those over atomic actions of a
specification

@ Preserved program order (ppo): Program order is too strong to define global
consistency

@ Specification order (so): Needed to define happens-before guarantees of each library

Brijesh Dongol Semantics of RDMA 31/38

Subevents via Stamps

Use “stamps” to split events into fine-grained subevents

SEvent £ {(e,a) |e € EAac stmp(e)}

Brijesh Dongol Semantics of RDMA 32/38

Subevents via Stamps

Use “stamps” to split events into fine-grained subevents
SEvent £ {(e,a) |e € EAac stmp(e)}

Example. For the shared variable library:

stmp(Writesy) = {aCW}
stmp(Readsy) = {aCR}
stmp(GFsv({M, ..., Nk})) = {aGFp,,...,aGFp, }
stmp(Bcastsy(-, -, {M,...,Nk})) = {aNLRy,,aNRWp,, ..., aNLRp,, aNRWp, }
stmp(Waitsy) = {aWT}

Brijesh Dongol Semantics of RDMA 32/38

Stamp Order and Preserved Program Order
Stamps order (to) used to define preserved program order (ppo)

ppo = {{(e1,a1), (€2, @) | (€1,€2) € PO A ar € stmp(e1) A @ € stmp(e2) A {(ay, @) € to}

Brijesh Dongol Semantics of RDMA 33/38

Stamp Order and Preserved Program Order
Stamps order (to) used to define preserved program order (ppo)

ppo = {{(e1,a1), (€2, @) | (€1,€2) € PO A ar € stmp(e1) A @ € stmp(e2) A {(ay, @) € to}

Example. Shared variable library

Second Stamp

single families
to
aCR | aCW | aCAS | aMF | aWT | aNLR, | aNRW, | aNRR, | aNLW, | aRF, | aGFp
J | 7 v VR v v v v v v
o X | 7 v /| X v v v v v v
ol S|/ 7 /7 7 v v v v v
c|® J | 7 v v |7 v v v/ v v v
& VR 7 VR 7 7 7 7 7 7
k7 X X X X X SN SN SN SN SN SN
T | o X X X X X X SN SN SN X SN
= X | x X X | X X X X SN | SN | sN
£ X | X X X | X X X X SN X | sN
h X X X X X SN SN SN SN SN SN
v | 7 v VAR v v v v v v

Brijesh Dongol Semantics of RDMA

Global Consistency

Definition
Let A be a set of libraries. An execution (E, po, stmp, so, hb) is A-consistent iff each of the
following holds.

@ (ppouUso)t C hb

@ hb is a strict partial order

@ E=Jycp ElLand so = [J p 801

@ Forall L € A, we have (E|;, po|., stmp|., SO|., hb|;) is consistent

Brijesh Dongol Semantics of RDMA 34/38

Per Library Consistency

Define the specification of each library using notion of consistency

Definition (SVv-consistency)

(E, po, stmp, so, hb) is sv-consistent if:
@ there exists rf, and mo, such that

@ [aCR]; (po~' N rb); [acW] = B, and
@ so =isoUrfe UpfUrbuUmo.

iso, rfe, pf, ro and mo are further relations derived from po, rf and mo.

Brijesh Dongol Semantics of RDMA

35/38

Implementation Soundness and Locality

@ Global soundness (aka contextual refinement):
For every output of a program using a (family of) library implementation(s)

Brijesh Dongol Semantics of RDMA 36/38

Implementation Soundness and Locality

@ Global soundness (aka contextual refinement):

For every output of a program using a (family of) library implementation(s)
there exists a valid execution of the program using a (family of) specification(s)
producing the same output

Brijesh Dongol Semantics of RDMA 36/38

Implementation Soundness and Locality

@ Global soundness (aka contextual refinement):

For every output of a program using a (family of) library implementation(s)
there exists a valid execution of the program using a (family of) specification(s)
producing the same output

@ Local soundness:
Conditions for relating execution graphs of a library’s implementation and specification
(straightforward, but technical)

@ Locality Theorem:
If an implementation is locally sound, then it is globally sound.

Brijesh Dongol Semantics of RDMA 36/38

Summary of Proofs

Barrier Ring buffer
Shared variables Mixed-size writes

N

RD MAWAIT

Summary of Proofs

Bugs found!—» Barrier Ring buffer
Shared variables Mixed-size writes <«— Bugs found!

Brijesh Dongol Semantics of RDMA

Conclusions

@ Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed Al training / federated ML, etc

@ Libraries such as LOCO provide programmer-friendly high-performance abstractions
@ We are taking steps towards correctness

Brijesh Dongol Semantics of RDMA 38/38

Conclusions

@ Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed Al training / federated ML, etc

@ Libraries such as LOCO provide programmer-friendly high-performance abstractions

@ We are taking steps towards correctness ... BUT ... we have many open questions

Brijesh Dongol Semantics of RDMA 38/38

Conclusions

@ Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed Al training / federated ML, etc

@ Libraries such as LOCO provide programmer-friendly high-performance abstractions
@ We are taking steps towards correctness ... BUT ... we have many open questions
@ Future work:

Scalable (operational) proofs
(Owicki/Gries) logics
Mechanisation

vV vy VvVYyy

Brijesh Dongol Semantics of RDMA 38/38

Conclusions

@ Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed Al training / federated ML, etc

@ Libraries such as LOCO provide programmer-friendly high-performance abstractions
@ We are taking steps towards correctness ... BUT ... we have many open questions
@ Future work:

Scalable (operational) proofs
(Owicki/Gries) logics
Mechanisation

vV vy VvVYyy

@ Dagstuhl seminar proposal on “Foundations of Disaggregated Memory and Heterogeneous
Architectures” (under review)

Brijesh Dongol Semantics of RDMA 38/38

	Example 1: Local write — Remote write
	Example 2: Remote Write from Local – Local Write
	Example 3: Remote Write from Local – Poll – Local Write
	Problems with rdmamath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtso
	LOCO Libraries
	LOCO: rdmamath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgwait
	LOCO: Shared Variables
	LOCO: Shared Variables Implementation
	Declarative Verification Framework

