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Problem: Slow communication (TCP/IP)

Too slow for modern distributed applications

datacenters

cloud servers

in-memory databases

HPC systems

distributed AI training / federated ML

etc

Latency : ∼ ms
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Remote Direct Memory Access (RDMA)

CPU

RDMA NIC

PCIe
root

complex
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PCIe
root

complex
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Directly read from / write to remote memory

Zero-copy kernel bypass

Latency: ∼ µs

Recently becoming more widespread — Infiniband and RoCE

But:

▶ Complex semantics described via informal technical manuals
▶ Buggy implementations
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Remote Direct Memory Access (RDMA)

CPU

RDMA NIC

PCIe
root

complex
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PCIe
root

complex
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Memory

Our work: EPSRC project “SACRED-MA: Safe And seCure REmote Direct Memory Access”

Investigators: Brijesh Dongol, Gregory Chockler (Surrey); Azalea Raad (Imperial);

Post Docs: Guillaume Ambal (Imperial) and ??? (Surrey);

Partners: NVIDIA (formerly Mellanox), Arm, Tel Aviv University, Cornell, Max Planck Institute,
Uni. Colorado Boulder
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Our work

Formalising RDMA semantics (assuming TSO for the CPU)
1 Operational semantics
2 Declarative semantics
3 Semantics proved equivalent
4 Empirical validation

 OOPSLA 2024: Ambal, Dongol, Eran, Klimis, Lahav, Raad

5 LOCO library verification
}

Under submission:
Ambal, Chockler, Dongol, Raad, Vafeiadis
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RDMATSO: RDMA + Total Store Order (TSO)
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Programming Model and Syntax

Model:
network with several nodes
each node can have several threads

Syntax

Mem Locs x , y , z, . . .
Nodes n, n1, n2, n3, . . .

Commands c ::= x := e | r := x | mfence | . . . ← usual TSO
| xn := y | x := yn | poll(n) | . . . ← RDMA

Write x̃ := y for xn := y when n is uniquely identifiable (similarly x := ỹ )
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RDMATSO Architectures
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In detail, RDMA connection is through Queue Pairs from one thread to another

St. Buff.

wbL

reqL inR

outRrspL

wbR

Memory Memory

Queue grows this way
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Example 1: Local write — Remote write
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z = ?

x =0 z=?

x := 1
z̃ := x
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Example 2: Remote Write from Local – Local Write
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Example 3: Remote Write from Local – Poll – Local Write
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z = ?

x =0 z=?
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x := 1
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Problems with RDMATSO
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Problem 1: Message passing needs remote fences

x , y = 0

x := 1
y := 1

a := ỹ
b := x̃

(a, b) = (1, 0) ✓

x , y = 0

x := 1
y := 1

a := ỹ
rfence (n1)
b := x̃

(a, b) = (1, 0) ✗
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Problem 2: Remote operations are highly asynchronous

x =0 z=1 y =2

x := z̃
x := ỹ

x =1 ✓

x =2 ✓

x =0 z=1 y =2

ỹ := x
x := z̃

y =0 ✓

y =1 ✓
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Problem 3: Poll-based synchronisation is very fragile

x =0 z=0

z̃ := x
poll(n2)
x := 1

z=0 ✓

z = 1 ✗

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓

z=1 ✓

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
poll(n2)
x := 1

z=0 ✓

z=1 ✗
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LOCO Libraries
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LOCO abstractions

RDMAWAIT

Shared variables

Barrier Ring buffer

Mixed-size writes

LOCO (Library of Channel Objects) is a tower of abstractions emulating shared
memory under RDMA (https://arxiv.org/abs/2503.19270)
New base memory model RDMAWAIT

Highly performant and composable

... BUT... bugs found!
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LOCO: RDMAWAIT
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RDMAWAIT

Recall:

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓
z=1 ✓

wait behaviour:

x =0 z=0

z̃ :=d x
wait(d)
x := 1

z=0 ✓
z = 1 ✗

x =0 z=0

z̃ :=e x
z̃ :=d x
wait(d)
x := 1

z=0 ✓
z=1 ✗

RDMAWAIT is implemented over RDMATSO
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Wait and Store Buffering

y =0 x =0

x̃ :=d 1
wait(d)
a := y

ỹ :=e 1
wait(e)
b := x

(a, b) = (0, 0) ?

wait( ) only guarantees that the write has reached the remote buffer

St. Buff.

wbL

reqL inR

outRrspL

wbR

Memory Memory

Queue grows this way
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Fixing Store Buffering with Wait

y =0 x =0

x̃ := 1
⊥ :=d ⊥n2

wait(d)
a := y

ỹ := 1
⊥ :=e ⊥n1

wait(e)
b := x

(a, b) = (0, 0) ✗

⊥ :=d ⊥ is a zero-length read

But what if we want to
▶ synchronise across k nodes, or
▶ write to multiple nodes?
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LOCO: Shared Variables
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Shared Variables

m(ṽ) ::= WriteSV(x , v) | ReadSV(x , a) | GFSV({n1, . . . ,nk})
| BcastSV(x , d , {n1, . . . ,nk}) | WaitSV(d)

Idea: A copy of x exists on all nodes

WriteSV(x , v): modify x locally
ReadSV(x , a): return the local value of x into a
GFSV({n1, . . . ,nk}): perform a global fence on given set of nodes
BcastSV(x , d , {n1, . . . ,nk}): broadcast x with to nodes with broadcast id d
WaitSV(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables
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m(ṽ) ::= WriteSV(x , v) | ReadSV(x , a) | GFSV({n1, . . . ,nk})
| BcastSV(x , d , {n1, . . . ,nk}) | WaitSV(d)

Idea: A copy of x exists on all nodes
WriteSV(x , v): modify x locally
ReadSV(x , a): return the local value of x into a
GFSV({n1, . . . ,nk}): perform a global fence on given set of nodes

BcastSV(x , d , {n1, . . . ,nk}): broadcast x with to nodes with broadcast id d
WaitSV(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables

Brijesh Dongol Semantics of RDMA 25 / 38



Shared Variables
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Global Fence Behaviour

Recall:

y =0 x =0

x̃ :=d 1
wait(d)
a := y

ỹ :=e 1
wait(e)
b := x

(a, b) = (0, 0) ✓

y =0 x =0

x̃ := 1
⊥ :=d ⊥n2

wait(d)
a := y

ỹ :=e 1
⊥ :=e ⊥n1

wait(e)
b := x

(a, b) = (0, 0) ✗

Global Fence:

y = 0 x = 0

x̃ := 1
GFSV({n2})
a := y

ỹ := 1
GFSV({n1})
b := x

(a, b) = (0, 0) ✗
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LOCO: Shared Variables Implementation
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Shared Variables: Implementation

Shared variable library is implemented over RDMAWAIT

WriteSV(x , v) ⇝ x := v
ReadSV(x , a) ⇝ a := x

GFSV({n1, . . . ,nk}) ⇝ ⊥ :=d ⊥n1 ; . . . ;⊥ :=d ⊥nk ; wait(d)

BcastSV(x , d , {n1, . . . ,nk}) ⇝ xn1 :=d x ; . . . ; xnk :=d x
WaitSV(d) ⇝ wait(d)

Question: How do we show correctness of the implementation?
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Declarative Verification Framework
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Declarative Semantics

y , c = 0,1 x , d = 0, 1

x̃ := c
poll(n2)
a := y

ỹ := d
poll(n1)
b := x

(a, b) = (0, 0) ✓

nlR(c, 1, n2)

nrW(xn2 , 1)

poll(n2)

lR(y , 0)

lW(a, 0)

nlR(d , 1,n1)

nrW(yn1 , 1)

poll(n1)

lR(x , 0)

lW(b, 0)

lW(y , 0) lW(c, 1) lW(d , 1) lW(x , 0)

ppo

pf

ppo

ppo

ppo

pf

ppo

ppo

rb

mo

rf rf

rf rf
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Declarative Correctness

Use a declarative (aka axiomatic) style of semantics
1 Define consistency predicate for the specification
2 Prove relationship between implementation and specification via an abstraction

function

.... BUT .... there are many details:
Compositionality: Consistency for a program using a set of libraries
Subevents: Need relations at a finer granularity than those over atomic actions of a
specification
Preserved program order (ppo): Program order is too strong to define global
consistency
Specification order (so): Needed to define happens-before guarantees of each library
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Subevents via Stamps

Use “stamps” to split events into fine-grained subevents

SEvent ≜ {⟨e,a⟩ | e ∈ E ∧ a ∈ stmp(e)}

Example. For the shared variable library:

stmp(WriteSV) = {aCW}
stmp(ReadSV) = {aCR}

stmp(GFSV({n1, . . . ,nk})) = {aGFn1 , . . . , aGFnk}
stmp(BcastSV( , , {n1, . . . ,nk})) = {aNLRn1 , aNRWn1 , . . . , aNLRnk , aNRWnk}

stmp(WaitSV) = {aWT}
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Stamp Order and Preserved Program Order
Stamps order (to) used to define preserved program order (ppo)

ppo ≜ {⟨⟨e1, a1⟩, ⟨e2, a2⟩⟩ | ⟨e1, e2⟩ ∈ po ∧ a1 ∈ stmp(e1) ∧ a2 ∈ stmp(e2) ∧ ⟨a1, a2⟩ ∈ to}

Example. Shared variable library

Second Stamp

to
single families

1 2 3 4 5 6 7 8 9 10 11
aCR aCW aCAS aMF aWT aNLRn aNRWn aNRRn aNLWn aRFn aGFn

Fi
rs

tS
ta

m
p si
ng

le

A aCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B aCW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

C aCAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D aMF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E aWT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fa
m

ili
es

F aNLRn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
G aNRWn ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN ✗ SN
H aNRRn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN
I aNLWn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN ✗ SN
J aRFn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
K aGFn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Global Consistency

Definition

Let Λ be a set of libraries. An execution ⟨E ,po, stmp, so,hb⟩ is Λ-consistent iff each of the
following holds.

(ppo ∪ so)+ ⊆ hb
hb is a strict partial order
E =

⋃
L∈Λ E |L and so =

⋃
L∈Λ so|L

For all L ∈ Λ, we have ⟨E |L, po|L, stmp|L, so|L, hb|L⟩ is consistent
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Per Library Consistency

Define the specification of each library using notion of consistency

Definition (SV-consistency)

⟨E , po, stmp, so, hb⟩ is SV-consistent if:
1 there exists rf, and mo, such that

1 [aCR]; (po−1 ∩ rb); [aCW] = ∅, and
2 so = iso ∪ rfe ∪ pf ∪ rb ∪ mo.

iso, rfe, pf, rb and mo are further relations derived from po, rf and mo.
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Implementation Soundness and Locality

Global soundness (aka contextual refinement):
For every output of a program using a (family of) library implementation(s)

there exists a valid execution of the program using a (family of) specification(s)
producing the same output

Local soundness:
Conditions for relating execution graphs of a library’s implementation and specification
(straightforward, but technical)

Locality Theorem:
If an implementation is locally sound, then it is globally sound.
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Summary of Proofs

RDMAWAIT

Shared variables

Barrier Ring buffer

Mixed-size writes

Bugs found!

Bugs found!
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Conclusions

Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed AI training / federated ML, etc

Libraries such as LOCO provide programmer-friendly high-performance abstractions

We are taking steps towards correctness

... BUT ... we have many open questions

Future work:

▶ Scalable (operational) proofs
▶ (Owicki/Gries) logics
▶ Mechanisation
▶ ...

Dagstuhl seminar proposal on “Foundations of Disaggregated Memory and Heterogeneous
Architectures” (under review)
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