
Correctly Programming
Remote Direct Memory Access (RDMA)

IFIP 2.3
Athens 2025

Brijesh Dongol1

with Guillaume Ambal2, Gregory Chockler1, Haggai Eran3,
Vasileios Klimis4, Ori Lahav5, Azalea Raad2, Viktor Vafeiadis6

1University of Surrey, 2Imperial College London, , 3NVIDIA,
4Queen Mary University of London, 5Tel Aviv University, 6MPI-SWS

Brijesh Dongol Semantics of RDMA 1 / 38

Problem: Slow communication (TCP/IP)

Too slow for modern distributed applications

datacenters

cloud servers

in-memory databases

HPC systems

distributed AI training / federated ML

etc

Latency : ∼ ms

Brijesh Dongol Semantics of RDMA 2 / 38

Problem: Slow communication (TCP/IP)

Too slow for modern distributed applications

datacenters

cloud servers

in-memory databases

HPC systems

distributed AI training / federated ML

etc
Latency : ∼ ms

Brijesh Dongol Semantics of RDMA 2 / 38

Remote Direct Memory Access (RDMA)

CPU

RDMA NIC

PCIe
root

complex

Memory

RDMA NIC

PCIe
root

complex

CPU

Memory

Brijesh Dongol Semantics of RDMA 3 / 38

Remote Direct Memory Access (RDMA)

CPU

RDMA NIC

PCIe
root

complex

Memory

RDMA NIC

PCIe
root

complex

CPU

Memory

Brijesh Dongol Semantics of RDMA 3 / 38

Remote Direct Memory Access (RDMA)

CPU

RDMA NIC

PCIe
root

complex

Memory

RDMA NIC

PCIe
root

complex

CPU

Memory

Directly read from / write to remote memory

Zero-copy kernel bypass

Latency: ∼ µs

Recently becoming more widespread — Infiniband and RoCE

But:

▶ Complex semantics described via informal technical manuals
▶ Buggy implementations

Brijesh Dongol Semantics of RDMA 3 / 38

Remote Direct Memory Access (RDMA)

CPU

RDMA NIC

PCIe
root

complex

Memory

RDMA NIC

PCIe
root

complex

CPU

Memory

Directly read from / write to remote memory

Zero-copy kernel bypass

Latency: ∼ µs

Recently becoming more widespread — Infiniband and RoCE

But:

▶ Complex semantics described via informal technical manuals
▶ Buggy implementations

Brijesh Dongol Semantics of RDMA 3 / 38

Remote Direct Memory Access (RDMA)

CPU

RDMA NIC

PCIe
root

complex

Memory

RDMA NIC

PCIe
root

complex

CPU

Memory

Our work: EPSRC project “SACRED-MA: Safe And seCure REmote Direct Memory Access”

Investigators: Brijesh Dongol, Gregory Chockler (Surrey); Azalea Raad (Imperial);

Post Docs: Guillaume Ambal (Imperial) and ??? (Surrey);

Partners: NVIDIA (formerly Mellanox), Arm, Tel Aviv University, Cornell, Max Planck Institute,
Uni. Colorado Boulder

Brijesh Dongol Semantics of RDMA 3 / 38

Our work

Formalising RDMA semantics (assuming TSO for the CPU)
1 Operational semantics
2 Declarative semantics
3 Semantics proved equivalent
4 Empirical validation

 OOPSLA 2024: Ambal, Dongol, Eran, Klimis, Lahav, Raad

5 LOCO library verification
}

Under submission:
Ambal, Chockler, Dongol, Raad, Vafeiadis

Brijesh Dongol Semantics of RDMA 4 / 38

RDMATSO: RDMA + Total Store Order (TSO)

Thread 1 ... Thread m RDMA NIC

PCIe
root

complex

S
t.

B
uf

f.
1

S
t.

B
uf

f.
m

Memory

RDMA NIC

PCIe
root

complex

Thread 1 ... Thread m

S
t.

B
uf

f.
1

S
t.

B
uf

f.
m

Memory

Brijesh Dongol Semantics of RDMA 5 / 38

Programming Model and Syntax

Model:
network with several nodes
each node can have several threads

Syntax

Mem Locs x , y , z, . . .
Nodes n, n1, n2, n3, . . .

Commands c ::= x := e | r := x | mfence | . . . ← usual TSO
| xn := y | x := yn | poll(n) | . . . ← RDMA

Write x̃ := y for xn := y when n is uniquely identifiable (similarly x := ỹ)

Brijesh Dongol Semantics of RDMA 6 / 38

Programming Model and Syntax

Model:
network with several nodes
each node can have several threads

Syntax

Mem Locs x , y , z, . . .
Nodes n, n1, n2, n3, . . .

Commands c ::= x := e | r := x | mfence | . . . ← usual TSO
| xn := y | x := yn | poll(n) | . . . ← RDMA

Write x̃ := y for xn := y when n is uniquely identifiable (similarly x := ỹ)

Brijesh Dongol Semantics of RDMA 6 / 38

RDMATSO Architectures
Thread 1 ... Thread m NIC

PCIe
root

complex

S
t.

B
uf

f.
1

S
t.

B
uf

f.
m

Memory

NIC

PCIe
root

complex

Thread 1 ... Thread m

S
t.

B
uf

f.
1

S
t.

B
uf

f.
m

Memory

In detail, RDMA connection is through Queue Pairs from one thread to another

St. Buff.

wbL

reqL inR

outRrspL

wbR

Memory Memory

Queue grows this way

Brijesh Dongol Semantics of RDMA 7 / 38

Example 1: Local write — Remote write

Brijesh Dongol Semantics of RDMA 8 / 38

z = ?

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

x := 1

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

x := 1
z̃ := x

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := 1

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := 1

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
1

x =0 z=?

x := 1
z̃ := x

9 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
1

z = 0 ✗

z = 1 ✓

x =0 z=?

x := 1
z̃ := x

9 / 38

Example 2: Remote Write from Local – Local Write

Brijesh Dongol Semantics of RDMA 10 / 38

z = ?

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

x := 1

z̃ := x

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := 1

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
?

z̃ := 1

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
1

x =0 z=?

z̃ := x
x := 1

11 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
1

z = 0 ✓

z = 1 ✓

x =0 z=?

z̃ := x
x := 1

11 / 38

Example 3: Remote Write from Local – Poll – Local Write

Brijesh Dongol Semantics of RDMA 12 / 38

z = ?

x =0 z=?

z̃ := x
poll(n2)
x := 1

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

x =0 z=?

z̃ := x
poll(n2)
x := 1

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

z̃ := x

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

z̃ := 0

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
?

z̃ := 0

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
0

ack

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
0

ack

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
0ack

x =0 z=?

z̃ := x
poll(n2)
x := 1

×

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
0

NIC 2

Mem 2
z
0

x =0 z=?

z̃ := x
poll(n2)
x := 1

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
0

x =0 z=?

z̃ := x
poll(n2)
x := 1

13 / 38

Thread 1

S
t.

B
uf

f.

Mem 1

NIC 1

x
1

NIC 2

Mem 2
z
0

z = 0 ✓

z = 1 ✗

x =0 z=?

z̃ := x
poll(n2)
x := 1

13 / 38

Problems with RDMATSO

Brijesh Dongol Semantics of RDMA 14 / 38

Problem 1: Message passing needs remote fences

x , y = 0

x := 1
y := 1

a := ỹ
b := x̃

(a, b) = (1, 0) ✓

x , y = 0

x := 1
y := 1

a := ỹ
rfence (n1)
b := x̃

(a, b) = (1, 0) ✗

Brijesh Dongol Semantics of RDMA 15 / 38

Problem 1: Message passing needs remote fences

x , y = 0

x := 1
y := 1

a := ỹ
b := x̃

(a, b) = (1, 0) ✓

x , y = 0

x := 1
y := 1

a := ỹ
rfence (n1)
b := x̃

(a, b) = (1, 0) ✗

Brijesh Dongol Semantics of RDMA 15 / 38

Problem 2: Remote operations are highly asynchronous

x =0 z=1 y =2

x := z̃
x := ỹ

x =1 ✓

x =2 ✓

x =0 z=1 y =2

ỹ := x
x := z̃

y =0 ✓

y =1 ✓

Brijesh Dongol Semantics of RDMA 16 / 38

Problem 2: Remote operations are highly asynchronous

x =0 z=1 y =2

x := z̃
x := ỹ

x =1 ✓

x =2 ✓

x =0 z=1 y =2

ỹ := x
x := z̃

y =0 ✓

y =1 ✓

Brijesh Dongol Semantics of RDMA 16 / 38

Problem 3: Poll-based synchronisation is very fragile

x =0 z=0

z̃ := x
poll(n2)
x := 1

z=0 ✓

z = 1 ✗

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓

z=1 ✓

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
poll(n2)
x := 1

z=0 ✓

z=1 ✗

Brijesh Dongol Semantics of RDMA 17 / 38

Problem 3: Poll-based synchronisation is very fragile

x =0 z=0

z̃ := x
poll(n2)
x := 1

z=0 ✓

z = 1 ✗

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓

z=1 ✓

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
poll(n2)
x := 1

z=0 ✓

z=1 ✗

Brijesh Dongol Semantics of RDMA 17 / 38

Problem 3: Poll-based synchronisation is very fragile

x =0 z=0

z̃ := x
poll(n2)
x := 1

z=0 ✓

z = 1 ✗

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓

z=1 ✓

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
poll(n2)
x := 1

z=0 ✓

z=1 ✗

Brijesh Dongol Semantics of RDMA 17 / 38

LOCO Libraries

Brijesh Dongol Semantics of RDMA 18 / 38

LOCO abstractions

RDMAWAIT

Shared variables

Barrier Ring buffer

Mixed-size writes

LOCO (Library of Channel Objects) is a tower of abstractions emulating shared
memory under RDMA (https://arxiv.org/abs/2503.19270)
New base memory model RDMAWAIT

Highly performant and composable

... BUT... bugs found!

Brijesh Dongol Semantics of RDMA 19 / 38

https://arxiv.org/abs/2503.19270

LOCO abstractions

RDMAWAIT

Shared variables

Barrier Ring buffer

Mixed-size writes

LOCO (Library of Channel Objects) is a tower of abstractions emulating shared
memory under RDMA (https://arxiv.org/abs/2503.19270)
New base memory model RDMAWAIT

Highly performant and composable
... BUT... bugs found!

Brijesh Dongol Semantics of RDMA 19 / 38

https://arxiv.org/abs/2503.19270

LOCO: RDMAWAIT

Brijesh Dongol Semantics of RDMA 20 / 38

RDMAWAIT

Recall:

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓
z=1 ✓

wait behaviour:

x =0 z=0

z̃ :=d x
wait(d)
x := 1

z=0 ✓
z = 1 ✗

x =0 z=0

z̃ :=e x
z̃ :=d x
wait(d)
x := 1

z=0 ✓
z=1 ✗

RDMAWAIT is implemented over RDMATSO

Brijesh Dongol Semantics of RDMA 21 / 38

RDMAWAIT

Recall:

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓
z=1 ✓

wait behaviour:

x =0 z=0

z̃ :=d x
wait(d)
x := 1

z=0 ✓
z = 1 ✗

x =0 z=0

z̃ :=e x
z̃ :=d x
wait(d)
x := 1

z=0 ✓
z=1 ✗

RDMAWAIT is implemented over RDMATSO

Brijesh Dongol Semantics of RDMA 21 / 38

RDMAWAIT

Recall:

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓
z=1 ✓

wait behaviour:

x =0 z=0

z̃ :=d x
wait(d)
x := 1

z=0 ✓
z = 1 ✗

x =0 z=0

z̃ :=e x
z̃ :=d x
wait(d)
x := 1

z=0 ✓
z=1 ✗

RDMAWAIT is implemented over RDMATSO

Brijesh Dongol Semantics of RDMA 21 / 38

RDMAWAIT

Recall:

x =0 z=0

z̃ := x
z̃ := x
poll(n2)
x := 1

z=0 ✓
z=1 ✓

wait behaviour:

x =0 z=0

z̃ :=d x
wait(d)
x := 1

z=0 ✓
z = 1 ✗

x =0 z=0

z̃ :=e x
z̃ :=d x
wait(d)
x := 1

z=0 ✓
z=1 ✗

RDMAWAIT is implemented over RDMATSO

Brijesh Dongol Semantics of RDMA 21 / 38

Wait and Store Buffering

y =0 x =0

x̃ :=d 1
wait(d)
a := y

ỹ :=e 1
wait(e)
b := x

(a, b) = (0, 0) ?

wait() only guarantees that the write has reached the remote buffer

St. Buff.

wbL

reqL inR

outRrspL

wbR

Memory Memory

Queue grows this way

Brijesh Dongol Semantics of RDMA 22 / 38

Wait and Store Buffering

y =0 x =0

x̃ :=d 1
wait(d)
a := y

ỹ :=e 1
wait(e)
b := x

(a, b) = (0, 0) ✓

wait() only guarantees that the write has reached the remote buffer

St. Buff.

wbL

reqL inR

outRrspL

wbR

Memory Memory

Queue grows this way

Brijesh Dongol Semantics of RDMA 22 / 38

Wait and Store Buffering

y =0 x =0

x̃ :=d 1
wait(d)
a := y

ỹ :=e 1
wait(e)
b := x

(a, b) = (0, 0) ✓

wait() only guarantees that the write has reached the remote buffer

St. Buff.

wbL

reqL inR

outRrspL

wbR

Memory Memory

Queue grows this way

Brijesh Dongol Semantics of RDMA 22 / 38

Fixing Store Buffering with Wait

y =0 x =0

x̃ := 1
⊥ :=d ⊥n2

wait(d)
a := y

ỹ := 1
⊥ :=e ⊥n1

wait(e)
b := x

(a, b) = (0, 0) ✗

⊥ :=d ⊥ is a zero-length read

But what if we want to
▶ synchronise across k nodes, or
▶ write to multiple nodes?

Brijesh Dongol Semantics of RDMA 23 / 38

Fixing Store Buffering with Wait

y =0 x =0

x̃ := 1
⊥ :=d ⊥n2

wait(d)
a := y

ỹ := 1
⊥ :=e ⊥n1

wait(e)
b := x

⊥ :=d ⊥ is a zero-length read

But what if we want to
▶ synchronise across k nodes, or
▶ write to multiple nodes?

Brijesh Dongol Semantics of RDMA 23 / 38

LOCO: Shared Variables

Brijesh Dongol Semantics of RDMA 24 / 38

Shared Variables

m(ṽ) ::= WriteSV(x , v) | ReadSV(x , a) | GFSV({n1, . . . ,nk})
| BcastSV(x , d , {n1, . . . ,nk}) | WaitSV(d)

Idea: A copy of x exists on all nodes

WriteSV(x , v): modify x locally
ReadSV(x , a): return the local value of x into a
GFSV({n1, . . . ,nk}): perform a global fence on given set of nodes
BcastSV(x , d , {n1, . . . ,nk}): broadcast x with to nodes with broadcast id d
WaitSV(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables

Brijesh Dongol Semantics of RDMA 25 / 38

Shared Variables

m(ṽ) ::= WriteSV(x , v) | ReadSV(x , a) | GFSV({n1, . . . ,nk})
| BcastSV(x , d , {n1, . . . ,nk}) | WaitSV(d)

Idea: A copy of x exists on all nodes
WriteSV(x , v): modify x locally
ReadSV(x , a): return the local value of x into a

GFSV({n1, . . . ,nk}): perform a global fence on given set of nodes
BcastSV(x , d , {n1, . . . ,nk}): broadcast x with to nodes with broadcast id d
WaitSV(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables

Brijesh Dongol Semantics of RDMA 25 / 38

Shared Variables

m(ṽ) ::= WriteSV(x , v) | ReadSV(x , a) | GFSV({n1, . . . ,nk})
| BcastSV(x , d , {n1, . . . ,nk}) | WaitSV(d)

Idea: A copy of x exists on all nodes
WriteSV(x , v): modify x locally
ReadSV(x , a): return the local value of x into a
GFSV({n1, . . . ,nk}): perform a global fence on given set of nodes

BcastSV(x , d , {n1, . . . ,nk}): broadcast x with to nodes with broadcast id d
WaitSV(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables

Brijesh Dongol Semantics of RDMA 25 / 38

Shared Variables

m(ṽ) ::= WriteSV(x , v) | ReadSV(x , a) | GFSV({n1, . . . ,nk})
| BcastSV(x , d , {n1, . . . ,nk}) | WaitSV(d)

Idea: A copy of x exists on all nodes
WriteSV(x , v): modify x locally
ReadSV(x , a): return the local value of x into a
GFSV({n1, . . . ,nk}): perform a global fence on given set of nodes
BcastSV(x , d , {n1, . . . ,nk}): broadcast x with to nodes with broadcast id d
WaitSV(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables

Brijesh Dongol Semantics of RDMA 25 / 38

Shared Variables

m(ṽ) ::= WriteSV(x , v) | ReadSV(x , a) | GFSV({n1, . . . ,nk})
| BcastSV(x , d , {n1, . . . ,nk}) | WaitSV(d)

Idea: A copy of x exists on all nodes
WriteSV(x , v): modify x locally
ReadSV(x , a): return the local value of x into a
GFSV({n1, . . . ,nk}): perform a global fence on given set of nodes
BcastSV(x , d , {n1, . . . ,nk}): broadcast x with to nodes with broadcast id d
WaitSV(d): wait for broadcast with id d

Note: SV allows write-write races; prevented using another library called Owned Variables

Brijesh Dongol Semantics of RDMA 25 / 38

Global Fence Behaviour

Recall:

y =0 x =0

x̃ :=d 1
wait(d)
a := y

ỹ :=e 1
wait(e)
b := x

(a, b) = (0, 0) ✓

y =0 x =0

x̃ := 1
⊥ :=d ⊥n2

wait(d)
a := y

ỹ :=e 1
⊥ :=e ⊥n1

wait(e)
b := x

(a, b) = (0, 0) ✗

Global Fence:

y = 0 x = 0

x̃ := 1
GFSV({n2})
a := y

ỹ := 1
GFSV({n1})
b := x

(a, b) = (0, 0) ✗

Brijesh Dongol Semantics of RDMA 26 / 38

Global Fence Behaviour

Recall:

y =0 x =0

x̃ :=d 1
wait(d)
a := y

ỹ :=e 1
wait(e)
b := x

(a, b) = (0, 0) ✓

y =0 x =0

x̃ := 1
⊥ :=d ⊥n2

wait(d)
a := y

ỹ :=e 1
⊥ :=e ⊥n1

wait(e)
b := x

(a, b) = (0, 0) ✗

Global Fence:

y = 0 x = 0

x̃ := 1
GFSV({n2})
a := y

ỹ := 1
GFSV({n1})
b := x

(a, b) = (0, 0) ✗

Brijesh Dongol Semantics of RDMA 26 / 38

LOCO: Shared Variables Implementation

Brijesh Dongol Semantics of RDMA 27 / 38

Shared Variables: Implementation

Shared variable library is implemented over RDMAWAIT

WriteSV(x , v) ⇝ x := v
ReadSV(x , a) ⇝ a := x

GFSV({n1, . . . ,nk}) ⇝ ⊥ :=d ⊥n1 ; . . . ;⊥ :=d ⊥nk ; wait(d)

BcastSV(x , d , {n1, . . . ,nk}) ⇝ xn1 :=d x ; . . . ; xnk :=d x
WaitSV(d) ⇝ wait(d)

Question: How do we show correctness of the implementation?

Brijesh Dongol Semantics of RDMA 28 / 38

Shared Variables: Implementation

Shared variable library is implemented over RDMAWAIT

WriteSV(x , v) ⇝ x := v
ReadSV(x , a) ⇝ a := x

GFSV({n1, . . . ,nk}) ⇝ ⊥ :=d ⊥n1 ; . . . ;⊥ :=d ⊥nk ; wait(d)

BcastSV(x , d , {n1, . . . ,nk}) ⇝ xn1 :=d x ; . . . ; xnk :=d x
WaitSV(d) ⇝ wait(d)

Question: How do we show correctness of the implementation?

Brijesh Dongol Semantics of RDMA 28 / 38

Shared Variables: Implementation

Shared variable library is implemented over RDMAWAIT

WriteSV(x , v) ⇝ x := v
ReadSV(x , a) ⇝ a := x

GFSV({n1, . . . ,nk}) ⇝ ⊥ :=d ⊥n1 ; . . . ;⊥ :=d ⊥nk ; wait(d)

BcastSV(x , d , {n1, . . . ,nk}) ⇝ xn1 :=d x ; . . . ; xnk :=d x
WaitSV(d) ⇝ wait(d)

Question: How do we show correctness of the implementation?

Brijesh Dongol Semantics of RDMA 28 / 38

Shared Variables: Implementation

Shared variable library is implemented over RDMAWAIT

WriteSV(x , v) ⇝ x := v
ReadSV(x , a) ⇝ a := x

GFSV({n1, . . . ,nk}) ⇝ ⊥ :=d ⊥n1 ; . . . ;⊥ :=d ⊥nk ; wait(d)

BcastSV(x , d , {n1, . . . ,nk}) ⇝ xn1 :=d x ; . . . ; xnk :=d x
WaitSV(d) ⇝ wait(d)

Question: How do we show correctness of the implementation?

Brijesh Dongol Semantics of RDMA 28 / 38

Shared Variables: Implementation

Shared variable library is implemented over RDMAWAIT

WriteSV(x , v) ⇝ x := v
ReadSV(x , a) ⇝ a := x

GFSV({n1, . . . ,nk}) ⇝ ⊥ :=d ⊥n1 ; . . . ;⊥ :=d ⊥nk ; wait(d)

BcastSV(x , d , {n1, . . . ,nk}) ⇝ xn1 :=d x ; . . . ; xnk :=d x
WaitSV(d) ⇝ wait(d)

Question: How do we show correctness of the implementation?

Brijesh Dongol Semantics of RDMA 28 / 38

Declarative Verification Framework

Brijesh Dongol Semantics of RDMA 29 / 38

Declarative Semantics

y , c = 0,1 x , d = 0, 1

x̃ := c
poll(n2)
a := y

ỹ := d
poll(n1)
b := x

(a, b) = (0, 0) ✓

nlR(c, 1, n2)

nrW(xn2 , 1)

poll(n2)

lR(y , 0)

lW(a, 0)

nlR(d , 1,n1)

nrW(yn1 , 1)

poll(n1)

lR(x , 0)

lW(b, 0)

lW(y , 0) lW(c, 1) lW(d , 1) lW(x , 0)

ppo

pf

ppo

ppo

ppo

pf

ppo

ppo

rb

mo

rf rf

rf rf

Brijesh Dongol Semantics of RDMA 30 / 38

Declarative Correctness

Use a declarative (aka axiomatic) style of semantics
1 Define consistency predicate for the specification
2 Prove relationship between implementation and specification via an abstraction

function

.... BUT there are many details:
Compositionality: Consistency for a program using a set of libraries
Subevents: Need relations at a finer granularity than those over atomic actions of a
specification
Preserved program order (ppo): Program order is too strong to define global
consistency
Specification order (so): Needed to define happens-before guarantees of each library

Brijesh Dongol Semantics of RDMA 31 / 38

Declarative Correctness

Use a declarative (aka axiomatic) style of semantics
1 Define consistency predicate for the specification
2 Prove relationship between implementation and specification via an abstraction

function

.... BUT there are many details:
Compositionality: Consistency for a program using a set of libraries
Subevents: Need relations at a finer granularity than those over atomic actions of a
specification
Preserved program order (ppo): Program order is too strong to define global
consistency
Specification order (so): Needed to define happens-before guarantees of each library

Brijesh Dongol Semantics of RDMA 31 / 38

Subevents via Stamps

Use “stamps” to split events into fine-grained subevents

SEvent ≜ {⟨e,a⟩ | e ∈ E ∧ a ∈ stmp(e)}

Example. For the shared variable library:

stmp(WriteSV) = {aCW}
stmp(ReadSV) = {aCR}

stmp(GFSV({n1, . . . ,nk})) = {aGFn1 , . . . , aGFnk}
stmp(BcastSV(, , {n1, . . . ,nk})) = {aNLRn1 , aNRWn1 , . . . , aNLRnk , aNRWnk}

stmp(WaitSV) = {aWT}

Brijesh Dongol Semantics of RDMA 32 / 38

Subevents via Stamps

Use “stamps” to split events into fine-grained subevents

SEvent ≜ {⟨e,a⟩ | e ∈ E ∧ a ∈ stmp(e)}

Example. For the shared variable library:

stmp(WriteSV) = {aCW}
stmp(ReadSV) = {aCR}

stmp(GFSV({n1, . . . ,nk})) = {aGFn1 , . . . , aGFnk}
stmp(BcastSV(, , {n1, . . . ,nk})) = {aNLRn1 , aNRWn1 , . . . , aNLRnk , aNRWnk}

stmp(WaitSV) = {aWT}

Brijesh Dongol Semantics of RDMA 32 / 38

Stamp Order and Preserved Program Order
Stamps order (to) used to define preserved program order (ppo)

ppo ≜ {⟨⟨e1, a1⟩, ⟨e2, a2⟩⟩ | ⟨e1, e2⟩ ∈ po ∧ a1 ∈ stmp(e1) ∧ a2 ∈ stmp(e2) ∧ ⟨a1, a2⟩ ∈ to}

Example. Shared variable library

Second Stamp

to
single families

1 2 3 4 5 6 7 8 9 10 11
aCR aCW aCAS aMF aWT aNLRn aNRWn aNRRn aNLWn aRFn aGFn

Fi
rs

tS
ta

m
p si
ng

le

A aCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B aCW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

C aCAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D aMF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E aWT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fa
m

ili
es

F aNLRn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
G aNRWn ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN ✗ SN
H aNRRn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN
I aNLWn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN ✗ SN
J aRFn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
K aGFn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Brijesh Dongol Semantics of RDMA 33 / 38

Stamp Order and Preserved Program Order
Stamps order (to) used to define preserved program order (ppo)

ppo ≜ {⟨⟨e1, a1⟩, ⟨e2, a2⟩⟩ | ⟨e1, e2⟩ ∈ po ∧ a1 ∈ stmp(e1) ∧ a2 ∈ stmp(e2) ∧ ⟨a1, a2⟩ ∈ to}

Example. Shared variable library

Second Stamp

to
single families

1 2 3 4 5 6 7 8 9 10 11
aCR aCW aCAS aMF aWT aNLRn aNRWn aNRRn aNLWn aRFn aGFn

Fi
rs

tS
ta

m
p si
ng

le

A aCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B aCW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

C aCAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D aMF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E aWT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fa
m

ili
es

F aNLRn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
G aNRWn ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN ✗ SN
H aNRRn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN SN SN
I aNLWn ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ SN ✗ SN
J aRFn ✗ ✗ ✗ ✗ ✗ SN SN SN SN SN SN
K aGFn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Brijesh Dongol Semantics of RDMA 33 / 38

Global Consistency

Definition

Let Λ be a set of libraries. An execution ⟨E ,po, stmp, so,hb⟩ is Λ-consistent iff each of the
following holds.

(ppo ∪ so)+ ⊆ hb
hb is a strict partial order
E =

⋃
L∈Λ E |L and so =

⋃
L∈Λ so|L

For all L ∈ Λ, we have ⟨E |L, po|L, stmp|L, so|L, hb|L⟩ is consistent

Brijesh Dongol Semantics of RDMA 34 / 38

Per Library Consistency

Define the specification of each library using notion of consistency

Definition (SV-consistency)

⟨E , po, stmp, so, hb⟩ is SV-consistent if:
1 there exists rf, and mo, such that

1 [aCR]; (po−1 ∩ rb); [aCW] = ∅, and
2 so = iso ∪ rfe ∪ pf ∪ rb ∪ mo.

iso, rfe, pf, rb and mo are further relations derived from po, rf and mo.

Brijesh Dongol Semantics of RDMA 35 / 38

Implementation Soundness and Locality

Global soundness (aka contextual refinement):
For every output of a program using a (family of) library implementation(s)

there exists a valid execution of the program using a (family of) specification(s)
producing the same output

Local soundness:
Conditions for relating execution graphs of a library’s implementation and specification
(straightforward, but technical)

Locality Theorem:
If an implementation is locally sound, then it is globally sound.

Brijesh Dongol Semantics of RDMA 36 / 38

Implementation Soundness and Locality

Global soundness (aka contextual refinement):
For every output of a program using a (family of) library implementation(s)

there exists a valid execution of the program using a (family of) specification(s)
producing the same output

Local soundness:
Conditions for relating execution graphs of a library’s implementation and specification
(straightforward, but technical)

Locality Theorem:
If an implementation is locally sound, then it is globally sound.

Brijesh Dongol Semantics of RDMA 36 / 38

Implementation Soundness and Locality

Global soundness (aka contextual refinement):
For every output of a program using a (family of) library implementation(s)

there exists a valid execution of the program using a (family of) specification(s)
producing the same output

Local soundness:
Conditions for relating execution graphs of a library’s implementation and specification
(straightforward, but technical)

Locality Theorem:
If an implementation is locally sound, then it is globally sound.

Brijesh Dongol Semantics of RDMA 36 / 38

Summary of Proofs

RDMAWAIT

Shared variables

Barrier Ring buffer

Mixed-size writes

Bugs found!

Bugs found!

Brijesh Dongol Semantics of RDMA 37 / 38

Summary of Proofs

RDMAWAIT

Shared variables

Barrier Ring buffer

Mixed-size writes

Bugs found!

Bugs found!

Brijesh Dongol Semantics of RDMA 37 / 38

Conclusions

Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed AI training / federated ML, etc

Libraries such as LOCO provide programmer-friendly high-performance abstractions

We are taking steps towards correctness

... BUT ... we have many open questions

Future work:

▶ Scalable (operational) proofs
▶ (Owicki/Gries) logics
▶ Mechanisation
▶ ...

Dagstuhl seminar proposal on “Foundations of Disaggregated Memory and Heterogeneous
Architectures” (under review)

Brijesh Dongol Semantics of RDMA 38 / 38

Conclusions

Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed AI training / federated ML, etc

Libraries such as LOCO provide programmer-friendly high-performance abstractions

We are taking steps towards correctness ... BUT ... we have many open questions

Future work:

▶ Scalable (operational) proofs
▶ (Owicki/Gries) logics
▶ Mechanisation
▶ ...

Dagstuhl seminar proposal on “Foundations of Disaggregated Memory and Heterogeneous
Architectures” (under review)

Brijesh Dongol Semantics of RDMA 38 / 38

Conclusions

Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed AI training / federated ML, etc

Libraries such as LOCO provide programmer-friendly high-performance abstractions

We are taking steps towards correctness ... BUT ... we have many open questions

Future work:

▶ Scalable (operational) proofs
▶ (Owicki/Gries) logics
▶ Mechanisation
▶ ...

Dagstuhl seminar proposal on “Foundations of Disaggregated Memory and Heterogeneous
Architectures” (under review)

Brijesh Dongol Semantics of RDMA 38 / 38

Conclusions

Technologies such as RDMA (and CXL) are becoming increasingly important for datacenters,
cloud servers, distributed AI training / federated ML, etc

Libraries such as LOCO provide programmer-friendly high-performance abstractions

We are taking steps towards correctness ... BUT ... we have many open questions

Future work:

▶ Scalable (operational) proofs
▶ (Owicki/Gries) logics
▶ Mechanisation
▶ ...

Dagstuhl seminar proposal on “Foundations of Disaggregated Memory and Heterogeneous
Architectures” (under review)

Brijesh Dongol Semantics of RDMA 38 / 38

	Example 1: Local write — Remote write
	Example 2: Remote Write from Local – Local Write
	Example 3: Remote Write from Local – Poll – Local Write
	Problems with rdmamath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgtso
	LOCO Libraries
	LOCO: rdmamath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgwait
	LOCO: Shared Variables
	LOCO: Shared Variables Implementation
	Declarative Verification Framework

