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Ensuring correctness of programs

Incorrect software has cost time, money, and human lives.1
• Non-terminating device driver code leads to non-responsive systems
• Software errors in the Ariane 5 rocket cost about $370M
• Therac-25 software errors caused deaths of cancer patients
• ...

.

1https://www.cs.tau.ac.il/~nachumd/horror.html
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Why can’t we solve the problem once and for all?

Undecidability of termination
There does not exist an algorithm that solves the halting problem for every
program and input.

Rice’s theorem
All non-trivial semantic properties of programs are undecidable.

Thus
• Automated verification usually involves trade-offs between soundness,

precision, resource consumption, etc.;
• Studying programs and loops with restricted forms is justified;
• Use of heuristics that only work sometimes can be justified.
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A troubled user of our termination provers
CPAChecker UAutomizer 2LS

int n = 4096;
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
; // skip

7 3 3

for (int i = 0; i < 4096; i++)
for (int j = 0; j < 4096; j++)

; // skip 7 7 3

for (int i = 0; i < 4096; i++)
for (int j = 0; j < 4096; j++)

i = i; 7 7 7

The unpredictability problem
Changes in the source program may have unpredictable effects on the
analysis results.
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The undesirable and the desirable

Program verification is currently unusable, because current tools
require too much expertise from the user. Stated differently, tools
can understand our programs, but we cannot understand our tools.
– Rustan and Michał

I want to understand why Coverity findings disappear and re-
appear...
– A user of static analysis
We want to make verification part of the continuous integration
pipeline...
– Peter
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A troubled (expert) user

This story from the Github issue1 illustrates
1 Users want behaviors of tools to be somehow predictable.
2 Nonlinear verification conditions can cause unpredictable behavior.

• Azadeh: Urgent help needed for
teaching in class, Dafny
verifying forever.

• Rustan: I’m guessing the
nonlinear arithmetic is causing
the extreme slow-down ...

• Azadeh: But I used the same
example in class last year.

lemma SquareRoot2NotRational(p: nat, q: nat)
requires p > 0 && q > 0
ensures p * p != 2 * q * q
{
if (p * p) == 2 * (q * q) {

calc == {
(2 * q - p) * (2 * q - p);
4 * q * q + p * p - 4 * p * q;
{assert 2 * q * q == p * p;}
2 * q * q + 2 * p * p - 4 * p * q;
2 * (p - q) * (p - q);

}
SquareRoot2NotRational(2 * q - p, p - q);

}
}

1https://github.com/dafny-lang/dafny/issues/1426
7 / 58

https://github.com/dafny-lang/dafny/issues/1426


A troubled (expert) user

This story from the Github issue1 illustrates
1 Users want behaviors of tools to be somehow predictable.
2 Nonlinear verification conditions can cause unpredictable behavior.

• Azadeh: Urgent help needed for
teaching in class, Dafny
verifying forever.

• Rustan: I’m guessing the
nonlinear arithmetic is causing
the extreme slow-down ...

• Azadeh: But I used the same
example in class last year.

lemma SquareRoot2NotRational(p: nat, q: nat)
requires p > 0 && q > 0
ensures p * p != 2 * q * q
{
if (p * p) == 2 * (q * q) {

calc == {
(2 * q - p) * (2 * q - p);
4 * q * q + p * p - 4 * p * q;
{assert 2 * q * q == p * p;}
2 * q * q + 2 * p * p - 4 * p * q;
2 * (p - q) * (p - q);

}
SquareRoot2NotRational(2 * q - p, p - q);

}
}

1https://github.com/dafny-lang/dafny/issues/1426
7 / 58

https://github.com/dafny-lang/dafny/issues/1426


A troubled (expert) user

This story from the Github issue1 illustrates
1 Users want behaviors of tools to be somehow predictable.
2 Nonlinear verification conditions can cause unpredictable behavior.

• Azadeh: Urgent help needed for
teaching in class, Dafny
verifying forever.

• Rustan: I’m guessing the
nonlinear arithmetic is causing
the extreme slow-down ...

• Azadeh: But I used the same
example in class last year.

lemma SquareRoot2NotRational(p: nat, q: nat)
requires p > 0 && q > 0
ensures p * p != 2 * q * q
{
if (p * p) == 2 * (q * q) {

calc == {
(2 * q - p) * (2 * q - p);
4 * q * q + p * p - 4 * p * q;
{assert 2 * q * q == p * p;}
2 * q * q + 2 * p * p - 4 * p * q;
2 * (p - q) * (p - q);

}
SquareRoot2NotRational(2 * q - p, p - q);

}
}

1https://github.com/dafny-lang/dafny/issues/1426
7 / 58

https://github.com/dafny-lang/dafny/issues/1426


A troubled (expert) user

This story from the Github issue1 illustrates
1 Users want behaviors of tools to be somehow predictable.
2 Nonlinear verification conditions can cause unpredictable behavior.

• Azadeh: Urgent help needed for
teaching in class, Dafny
verifying forever.

• Rustan: I’m guessing the
nonlinear arithmetic is causing
the extreme slow-down ...

• Azadeh: But I used the same
example in class last year.

lemma SquareRoot2NotRational(p: nat, q: nat)
requires p > 0 && q > 0
ensures p * p != 2 * q * q
{
if (p * p) == 2 * (q * q) {

calc == {
(2 * q - p) * (2 * q - p);
4 * q * q + p * p - 4 * p * q;
{assert 2 * q * q == p * p;}
2 * q * q + 2 * p * p - 4 * p * q;
2 * (p - q) * (p - q);

}
SquareRoot2NotRational(2 * q - p, p - q);

}
}

1https://github.com/dafny-lang/dafny/issues/1426
7 / 58

https://github.com/dafny-lang/dafny/issues/1426


A troubled (expert) user

This story from the Github issue1 illustrates
1 Users want behaviors of tools to be somehow predictable.
2 Nonlinear verification conditions can cause unpredictable behavior.

• Azadeh: Urgent help needed for
teaching in class, Dafny
verifying forever.

• Rustan: I’m guessing the
nonlinear arithmetic is causing
the extreme slow-down ...

• Azadeh: But I used the same
example in class last year.

lemma SquareRoot2NotRational(p: nat, q: nat)
requires p > 0 && q > 0
ensures p * p != 2 * q * q
{
if (p * p) == 2 * (q * q) {

calc == {
(2 * q - p) * (2 * q - p);
4 * q * q + p * p - 4 * p * q;
{assert 2 * q * q == p * p;}
2 * q * q + 2 * p * p - 4 * p * q;
2 * (p - q) * (p - q);

}
SquareRoot2NotRational(2 * q - p, p - q);

}
}

1https://github.com/dafny-lang/dafny/issues/1426
7 / 58

https://github.com/dafny-lang/dafny/issues/1426


A troubled (expert) user

This story from the Github issue1 illustrates
1 Users want behaviors of tools to be somehow predictable.
2 Nonlinear verification conditions can cause unpredictable behavior.

• Azadeh: Urgent help needed for
teaching in class, Dafny
verifying forever.

• Rustan: I’m guessing the
nonlinear arithmetic is causing
the extreme slow-down ...

• Azadeh: But I used the same
example in class last year.

lemma SquareRoot2NotRational(p: nat, q: nat)
requires p > 0 && q > 0
ensures p * p != 2 * q * q
{
if (p * p) == 2 * (q * q) {

calc == {
(2 * q - p) * (2 * q - p);
4 * q * q + p * p - 4 * p * q;
{assert 2 * q * q == p * p;}
2 * q * q + 2 * p * p - 4 * p * q;
2 * (p - q) * (p - q);

}
SquareRoot2NotRational(2 * q - p, p - q);

}
}

1https://github.com/dafny-lang/dafny/issues/1426
7 / 58

https://github.com/dafny-lang/dafny/issues/1426


Predictability via monotonicity

Current state-of-the-art tools exhibit unpredictable behavior.

We consider one property that makes the behavior of tools more
predictable:

Monotonicity
A monotone analysis improves or maintains the same result when given a
problem that is “not more difficult” than the original.

Proposition: tool users will appreciate such properties!
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Can you make it more concrete?

Example 1: reducing reachable states

• Before: a tool can prove a program P terminates unconditionally.
• After: can the tool prove that P terminates under precondition x ≥ 0?

Example 2: adding loop invariants

• Before: a tool can prove an assertion C in a program P.
• After: a user annotates P with an additional loop invariant I. Can the

tool still prove the assertion?
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Sources of non-monotonicity

1 Widening and narrowing in abstract interpretation.
2 Heuristics in model checking used by abstraction/refinement

methods, e.g., selecting predicates from counterexamples.
3 Techniques based on syntactic features of code rather than semantics.
4 Undecidability of nonlinear integer arithmetic (NIA).
5 ...
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My Research

I have worked on predictable analyses. In particular, I present:
• A framework for compositional and monotone termination analysis.
• A weak theory of nonlinear arithmetic that enables monotone

nonlinear invariant generation and synthesis of polynomial ranking
functions.
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Program states and transitions

Fix finite sets of pre-state program variables X and corresponding
post-state variables X′.

• A state formula S(X) is a formula with free variables drawn from X.

• A transition formula F(X,X′) is formula with free variables drawn
from X ∪ X′.

• Transition formulas characterize semantics of programs
• statement i := i + 1
• formula F ≜ i′ = i + 1 ∧ j′ = j
• transition system (Q2,

F−→) with a transition relation on states
{i 7→ x, j 7→ y} →F {i 7→ x + 1, j 7→ y}.
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Regular and ω-regular expressions

Let Σ be an alphabet. Define syntax for labels, regular expressions
(Kleene), and ω-regular expressions (Büchi) as

a ∈ Σ

e ∈ RegExp(Σ) ::= a | 0 | 1 | e1 + e2 | e1e2 | e∗

f ∈ ω-RegExp(Σ) ::= eω | ef | f1 + f2

• A regular expression recognizes a set of finite strings.
• An ω-regular expression recognizes a set of infinite strings.

• Aω recognize all words obtained by concatenating words from A
infinitely many times, e.g., (b∗a)ω recognizes all words with infinitely
many a’s.
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Algebraic program analysis (1)

Algebraic program analysis [Tar81b, FK15] is a form of abstract
interpretation in that it computes summaries that over-approximate loop
dynamics.

• Traditional (iterative) abstract interpretation:
• Start with a system of recursive equations that encode some abstract

semantics of the program
• Interpret the operations in the equations in an abstract domain
• Solve the equations over the abstract domain by computing a fixpoint

• Algebraic program analysis:
• Compute a system of recursive relations that encode some abstract

semantics of the program
• Compute a closed-form solution, which represents (approximates) the

transitive closure
• Interpret the closed-form solutions in some algebraic structure

Convenient to build monotone analyses: APA avoids fixpoint computations
in abstract domains thus avoids widening or narrowing.
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Algebraic program analysis (2)

General recipe:

1 Compute a regular expression that represent all finite program paths
starting from the program entry

2 Analyze program paths by interpreting the regular expression in some
algebra

The interpretation over-approximates semantics of all finite paths through
the program.
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Example: APA Step 1

Consider program while (j < 4096) j++.

Its control flow graph is

c

d

e

[j < 4096] [j := j + 1]

[j ≥ 4096]

A path expression representing all paths is (〈c, d〉 · 〈d, c〉)⋆ · 〈c, e〉.
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Example: APA Step 2

We focus on interpreting the part of the expression that represents the
loop (〈c, d〉 · 〈d, c〉)⋆:

⋆

·

〈d, c〉
j := j + 1

〈c, d〉
[j < 4096]

j < 4096 ∧ j′ = j ∧ i′ = i

j′ = j + 1 ∧ i′ = i

j < 4096 ∧ j′ = j + 1 ∧ i′ = i

∃k. ( k = 0

∨ (k ≥ 1

∧ j < 4096

∧ j′ ≤ 4096

∧ i′ = i))
∧ j′ = j + k
∧ i′ = i
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Monotone recurrences through convex hulls

Define the convex hull of an linear integer arithmetic (LIA) formula F(Y),
conv(F), to be the strongest formula of the form AY ≥ b that is entailed
by F, where A is an integer matrix and b is an integer vector. There exist
practical algorithms for this [FK15].
We can extract recurrences by invoking this procedure.

1 Compute conv(∃X,X′.F(X,X′) ∧
∧
x∈X

δx = x′ − x).

2 We get the strongest consequence among those with form Aδx ≥ b.
3 This entails that F |= Ax′ ≥ Ax + b and we get the strongest such

formula.

19 / 58
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Invariant generation using recurrences

Generating monotone linear loop summaries for APA [ZK21b].

1 Get strongest recurrence relations.

F |= (x′ + y′) = (x + y)− 1

∧x′ ≤ x ∧ x′ ≥ x − 1

∧y′ ≤ y ∧ y′ ≥ y − 1

2 Solve the symbolic system of
recurrences.

F⋆ ≜ ∃k.k ≥ 0 ∧ (x′ + y′) = (x + y)− k
∧x′ ≤ x ∧ x′ ≥ x − k
∧y′ ≤ y ∧ y′ ≥ y − k

3 Summarize the behavior of the loop
using F⋆.

while (x >= 0
&& y >= 0) {

if (*) {
x--;

} else {
y--;

}
}

20 / 58
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}
}
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ComPACT

A framework for practical, compositional termination analyses with
monotonicity guarantees that extends the algebraic program analysis
framework.

Contributions
• We extend Tarjan’s method [Tar81a] to compute path expressions for

infinite paths.
• We extend algebraic program analysis to handle infinite paths.
• We present a collection of monotone termination analyses that

instantiate the framework.
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Recipe comparison

Original algebraic program analysis recipe:
1 Compute regular expressions that represent finite program paths
2 Define the analysis as interpretations of operators

ComPACT:

1 Compute ω-regular expressions that represent infinite program paths
2 Define the analysis as interpretations of operators

• ⋆ operator – approximate the transitive closure of loops
• ω operator – obtain terminating conditions for a loop
• · operator – propagate terminating conditions
• + operator – combine terminating conditions for different paths

3 The interpretation is a condition under which the whole program
terminates
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Method Overview

for (int i = 0; i < 4096; i++)
for (int j = 0; j < 4096; j++)

; // skip

r

a

b

c

d

e

f

i := 0

[i ≥ 4096]

[i < 4096]

j := 0

[j < 4096] [j := j + 1]

[j ≥ 4096]

i := i + 1

1. CFG

⟨r, a⟩


outer loop︷ ︸︸ ︷

(⟨a, b⟩⟨b, c⟩(⟨c, d⟩⟨d, c⟩)∗⟨c, e⟩⟨e, a⟩)ω
+(⟨a, b⟩⟨b, c⟩(⟨c, d⟩⟨d, c⟩)∗⟨c, e⟩⟨e, a⟩)∗⟨a, b⟩⟨b, c⟩ (⟨c, d⟩⟨d, c⟩)ω︸ ︷︷ ︸

inner loop



2. Path expression

true
3. Terminating precondition
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ω-regular expressions

r

a

b

c

d

e

f

i := 0

[i ≥ 4096]

[i < 4096]

j := 0

[j < 4096] [j := j + 1]

[j ≥ 4096]

i := i + 1〈r, a〉


outer loop︷ ︸︸ ︷

(〈a, b〉〈b, c〉(〈c, d〉〈d, c〉)∗〈c, e〉〈e, a〉)ω
+(〈a, b〉〈b, c〉(〈c, d〉〈d, c〉)∗〈c, e〉〈e, a〉)∗〈a, b〉〈b, c〉 (〈c, d〉〈d, c〉)ω︸ ︷︷ ︸
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Interpreting ω-regular path expressions

Path expressions are interpreted compositionally in a bottom-up manner.
• TF: a regular algebra of transition formulas
• SF: an ω-regular algebra of state formulas that represents sufficient

preconditions for termination

TFJ0K ≜ false
TFJ1K ≜ ∧

x∈Var
x′ = x

TFJt1 · t2K ≜ TFJt1K ◦ TFJt2K
TFJt1 + t2K ≜ TFJt1K ∨ TFJt2K

TFJt⋆K ≜ (TFJtK)∗

SFJtωK ≜ mp(TFJtK)
SFJt · sK ≜ wp(TFJtK,SFJsK)

SFJs1 + s2K ≜ SFJs1K ∧ SFJs2K
composition of relations

approx. transitive closure [FK15]

mortal precondition

wp(F,S) ≜ ∀X′.F(X,X′) =⇒ S[X 7→ X′]

• Analyzing loop summaries makes it decidable
• Other operators are monotone, only need monotone ⋆ and mp

operators
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Monotone mortal precondition operators (1)

Mortal precondition operator mp
mp(F) returns a sufficient condition for a loop with body formula F to
terminate.

Monotonicity
If F |= G then mp(G) |= mp(F).
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Monotone mortal precondition operators (2)

We present the following operations that generate mortal preconditions.

• mp based on LLRF: returns true if there is a lexicographic linear
ranking function for the transition formula [GMR15]

• mp based on PRF and LPRF: returns true if there is a (lexicographic)
polynomial ranking function (next part)

• mp based on transitive closure: given a logical representation of
transitive closure, encodes the constraint that all computations have
bounded length

• mp combinator based on phase structure: partitions the loop into
phases and analyzes how program evolves across phases

• mpLDS based on abstracting the loop into a linear dynamical system
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mp through linear dynamical system abstraction

Linear loops (linear dynamical systems)

while (G(x)) { // guard is conjunctive
x = A x; // matrix multiplication

}

Symbolic closed-forms easy to compute, also line of work on decidability of
termination of linear loops
• Over the reals [Tiw04]
• Over the rationals [Bra06]
• Over the integers [HOW19]
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A monotone mp in two steps

Transfer techniques developed for linear loops to reason about termination
of general loops:

• Compute for any loop a best abstraction within a particular class of
linear dynamical systems.

• Generate terminating conditions for these linear dynamical systems.
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Simulation allows us to consider simpler systems

Let (A,
A−→) and (B,

B−→) be transition systems over linear state space.
A simulation S : A → B maps transitions in A to those in B, with inverse
S−1.

a a′
A

S(a)

S

S(a′)

S

B

A simulation S is linear if S is a linear function.
If B terminates starting from states within set X, then S−1(X) leads to
termination of A. Suppose A is hard to analyze while B is not, then we
may use S−1(mp(B)) ⊆ mp(A) to get some mortal preconditions for A.
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S−1.

a a′
A

S(a)

S

S(a′)

S

B

A simulation S is linear if S is a linear function.
If B terminates starting from states within set X, then S−1(X) leads to
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Example of a linear simulation

while (x + y >= 0) {
if (*) {
x = x - z;

} else {
y = y - z;

}
}

while (a ≥ 0)[
a
b

]
:=

[
1 −1
0 1

] [
a
b

]
[
a
b

]
=

[
1 1 0
0 0 1

]x
y
z



For the linear loop on the right, a′ = a − kb after k iterations. Thus a
mortal precondition is b > 0, which implies that a mortal precondition for
the original loop is z = b > 0.

32 / 58



Example of a linear simulation

while (x + y >= 0) {
if (*) {
x = x - z;

} else {
y = y - z;

}
}

while (a ≥ 0)[
a
b

]
:=

[
1 −1
0 1

] [
a
b

]

[
a
b

]
=

[
1 1 0
0 0 1

]x
y
z



For the linear loop on the right, a′ = a − kb after k iterations. Thus a
mortal precondition is b > 0, which implies that a mortal precondition for
the original loop is z = b > 0.

32 / 58



Example of a linear simulation

while (x + y >= 0) {
if (*) {
x = x - z;

} else {
y = y - z;

}
}

while (a ≥ 0)[
a
b

]
:=

[
1 −1
0 1

] [
a
b

]
[
a
b

]
=

[
1 1 0
0 0 1

]x
y
z



For the linear loop on the right, a′ = a − kb after k iterations. Thus a
mortal precondition is b > 0, which implies that a mortal precondition for
the original loop is z = b > 0.

32 / 58



Example of a linear simulation

while (x + y >= 0) {
if (*) {
x = x - z;

} else {
y = y - z;

}
}

while (a ≥ 0)[
a
b

]
:=

[
1 −1
0 1

] [
a
b

]
[
a
b

]
=

[
1 1 0
0 0 1

]x
y
z



For the linear loop on the right, a′ = a − kb after k iterations. Thus a
mortal precondition is b > 0, which implies that a mortal precondition for
the original loop is z = b > 0.

32 / 58



Which linear abstraction to use?

Q: There are many such linear loops that abstract (i.e., soundly
over-approximate) the original loop, which one should we use?

A: Use the best one which yields the weakest mortal precondition for the
original loop (omitting a bunch of linear algebra and category theoretic
details here)!
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Best abstractions leads to weakest mp

Transition systems

Linear loops

T U
linear simulation s

V

linear simulation t unique simulation t:
t = t ◦ s

mp(V)

mp(U) ⊇ t−1
(mp(V))

s−1(mp(U)) ⊇ s−1t−1
(mp(V)) = t−1(mp(V))

〈U, s〉 yields the
weakest mortal
precondition for T
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Key results for linear dynamical system abstraction

Step I: compute best abstractions
For any transition system T, we can compute its best abstraction within a
restricted class of linear loops whose asymptotic behavior is easy to
analyze.

Step II: compute mortal preconditions for linear loops
Given a guard formula G(x) and a linear map x′ = Ax with certain
restrictions on A, we can compute mortal preconditions by analyzing the
asymptotic behavior of the symbolic closed form G(Akx).
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Example for step II

This method is inspired by Tiwari [Tiw04].

while (a >= 0) {
a = a - b;

}

Loop body in matrix form[
a′
b′
]
=

[
1 −1
0 1

] [
a
b

]

Closed form[
a(k)
b(k)

]
=

[
1 −k
0 1

] [
a
b

]

Closed form for a in the guard
a(k) = a − bk

b < 0 ∨ (b = 0 ∧ a ≥ 0)
iff a(k) ≥ 0 for all k large enough

Sufficient condition for termination
¬(b < 0 ∨ (b = 0 ∧ a ≥ 0))
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Monotonicity of mp based on linear abstraction

Monotonicity of mpLDS

Given transition formulas F |= G, the condition we generate for F is
weaker than what we generate for G.

Proof idea: for any transition formula, we have used its best abstraction
which yields the weakest possible mortal precondition.
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Summary

ComPACT is a practical termination analysis framework, that
• extends algebraic program analysis to handle infinite paths;
• is monotone.
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Linear arithmetic and consequence finding

Linear arithmetic supports consequence finding.

Given linear formula F, find the best G of certain form such that F |= G.

• Satisfiability: check if False is a consequence.
• Extracting linear recurrences: find all linear inequalities implied by a

transition formula T with form F(X,X′) |= cx′ ≤ cx + d.
• (Complete) linear ranking function synthesis: find all linear terms cx

such that F(X,X′) |= (cx′ ≤ cx − 1 ∧ cx ≥ 0).
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Nonlinear arithmetic

Nonlinear integer arithmetic is undecidable, let alone consequence finding!

This work presents:
• A decidable theory of nonlinear arithmetic where strongest

consequences of certain forms can be computed.
• A scheme for generating nonlinear loop invariants that are monotone

with respect to the proposed theory.
• A scheme for synthesizing nonlinear ranking functions that provides a

monotone mortal precondition operator for nonlinear loops.
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Intuition for generalizing linear invariants
• Invariants based on linear consequences

1 Extract a system of linear recurrences entailed by the loop. Specifically,
linear terms whose changes are bounded by constants.

F(X,X′) |=
∧

i
tix′ ≤ tix + ci

2 Compute the closed form as a loop invariant.

F⋆ ≜ ∃k.k ≥ 0 ∧
∧

i
tix′ ≤ tix + kci

• Invariants based on nonlinear consequences
1 Extract a system of recurrences entailed by the loop. Specifically, linear

terms whose changes are bounded by invariant polynomials.

F(X,X′) |=
∧

i
tix′ ≤ tix + pi(x)

2 Compute the closed form as a loop invariant.

F⋆ ≜ ∃k.k ≥ 0 ∧
∧

i
tix′ ≤ tix + kpi(x)
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Example

1 Invariant linear terms include: (x − y)
2 Invariant polynomials generated include:

(x − y), (x − y)2

3 Extract linear terms whose changes are
bounded by constants or invariant
polynomials:
F |= w + 1 ≤ w′ ≤ w + 2

∧x′ − y′ = x − y
∧z′ = z + (x − y)2

4 The closed form solution approximates
loop behavior:
F⋆ ≜ ∃k.k ≥ 0 ∧ w + k ≤ w′ ≤ w + 2k

∧x′ − y′ = x − y
∧z′ = z + k(x − y)2

while (*) {
x = x + z;
y = y + z;
t = x - y;
z = z + t * t;
if (*)

w = w + 1;
else

w = w + 2;
}
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Generating nonlinear invariants

Given transition formula F(X,X′) of a loop body, if we can do consequence
findings of certain kinds, then we can implement an intuitive recipe:

Nonlinear invariants through consequence finding

1 Compute all consequences of F denoted by C(F) ≜ {q : F |= q ≥ 0}.
2 Extract all invariant linear terms c such that c′ − c ∈ C(F).
3 Extract all recurrences of the form tix′ − tix − pi ∈ C(F), where pi’s

are invariant polynomials “generated” by invariant linear term c’s.
4 Abstract the dynamics of the loop with nonlinear invariant

F⋆ ≜ ∃k.Int(k) ∧ k ≥ 0 ∧
∧

i
tix′ ≤ tix + kpi .

44 / 58



Generating nonlinear invariants

Given transition formula F(X,X′) of a loop body, if we can do consequence
findings of certain kinds, then we can implement an intuitive recipe:

Nonlinear invariants through consequence finding

1 Compute all consequences of F denoted by C(F) ≜ {q : F |= q ≥ 0}.

2 Extract all invariant linear terms c such that c′ − c ∈ C(F).
3 Extract all recurrences of the form tix′ − tix − pi ∈ C(F), where pi’s

are invariant polynomials “generated” by invariant linear term c’s.
4 Abstract the dynamics of the loop with nonlinear invariant

F⋆ ≜ ∃k.Int(k) ∧ k ≥ 0 ∧
∧

i
tix′ ≤ tix + kpi .

44 / 58



Generating nonlinear invariants

Given transition formula F(X,X′) of a loop body, if we can do consequence
findings of certain kinds, then we can implement an intuitive recipe:

Nonlinear invariants through consequence finding

1 Compute all consequences of F denoted by C(F) ≜ {q : F |= q ≥ 0}.
2 Extract all invariant linear terms c such that c′ − c ∈ C(F).

3 Extract all recurrences of the form tix′ − tix − pi ∈ C(F), where pi’s
are invariant polynomials “generated” by invariant linear term c’s.

4 Abstract the dynamics of the loop with nonlinear invariant

F⋆ ≜ ∃k.Int(k) ∧ k ≥ 0 ∧
∧

i
tix′ ≤ tix + kpi .

44 / 58



Generating nonlinear invariants

Given transition formula F(X,X′) of a loop body, if we can do consequence
findings of certain kinds, then we can implement an intuitive recipe:

Nonlinear invariants through consequence finding

1 Compute all consequences of F denoted by C(F) ≜ {q : F |= q ≥ 0}.
2 Extract all invariant linear terms c such that c′ − c ∈ C(F).
3 Extract all recurrences of the form tix′ − tix − pi ∈ C(F), where pi’s

are invariant polynomials “generated” by invariant linear term c’s.
4 Abstract the dynamics of the loop with nonlinear invariant

F⋆ ≜ ∃k.Int(k) ∧ k ≥ 0 ∧
∧

i
tix′ ≤ tix + kpi .

44 / 58



Synthesizing nonlinear ranking functions

Given transition formula F(X,X′) of a loop body, we could also use
consequence finding to prove termination.
mpPRF through consequence finding

1 Compute the complete set of polynomials that are bounded from
below by F:

Bounded(F) ≜ {q : F |= q ≥ 0} .

2 Given the previous set, find the subset of polynomials that are also
entailed to be decreasing by F:

PRF(F) ≜ {q : q ∈ Bounded(F) ∧ F |= q′ ≤ q − 1} .

3 Return true if PRF(F) is not empty since F has a polynomial ranking
function.
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PRF(F) ≜ {q : q ∈ Bounded(F) ∧ F |= q′ ≤ q − 1} .

3 Return true if PRF(F) is not empty since F has a polynomial ranking
function.
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The theory of linear integer/real rings LIRR

Consequences modulo the standard theory are hard to represent or
manipulate. We thus develop LIRR, a weak theory of nonlinear integer
arithmetic:

• Consequences modulo LIRR can be finitely represented.

• LIRR admits a complete consequence finding procedure.
Specifically, LIRR achieves this by
• only defines a weakly axiomatized multiplication symbol that

generates fewer consequences than the standard model, e.g., it
cannot derive 0 ≤ xy from 0 ≤ x ∧ 0 ≤ y.

• admitting methods for manipulating polynomial ideals (for equations)
and polyhedral cones (for inequalities).
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Monotonicity

Monotonicity of the ⋆ operator
If F,G are transition formulas and F |=LIRR G, then F⋆ |=LIRR G⋆.

Proof intuition: We have computed all consequences of the transition
formulas with certain forms. Thus invariants constructed based on these
consequences are monotone.

Monotonicity of the mpPRF operator
If F,G are transition formulas, F |=LIRR G, and mpPRF(G) is true. Then
mpPRF(F) is true.

Proof intuition: We have computed all polynomial terms that are implied
by F to be bounded from below and decreasing in LIRR. Thus the RF
synthesis procedure is complete and monotone (in LIRR).
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Summary

Nonlinear reasoning through LIRR

• We can compute strongest consequences of certain forms modulo
LIRR.

• The complete consequence finding makes it possible to have
monotone decision procedures for both safety and liveness properties
that require nonlinear reasoning.
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Comparing termination analyses: #benchmarks solved

• Suites termination, recursive: linear programs from
SV-COMP/Termination

• Suite polybench: real-world numerical C programs with 10K LOC
• Suite linear: integer linear loops with mod and div
• Suite nonlinear: nonlinear programs from SV-COMP/Termination
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Comparing termination analyses: running time
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Linear and nonlinear invariant generation

LIRR is weak by design. So are our invariants useful?

• Benchmarks from SV-COMP’s c/ReachSafety-Loops
• Chilon: our invariants
• Chilon+refine: our invariants + control-flow refinement [CBKR19]
• CRA: monotone invariants by solving linear recurrences [FK15]
• Ultimate Automizer, VeriAbs: top performers in SV-COMP
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Conclusion

My research shows it is possible to design monotone program analyses that
are competitive with state-of-the-art tools in terms of capability and
running speed. In particular, I have presented

• A framework for monotone termination analysis [ZK21b, ZK21a].
• A weak theory of nonlinear arithmetic that enables monotone

invariant generation [KKZ23] and ranking function synthesis [ZK24].
Questions?
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