Verified Secure Routing

Peter Muller
Joint work with the Verified Scion Team at ETH

ETH:-urich

= |Internet is a network of Autonomous
Systems (AS)

= Each AS is a network of routers run by an
institution

= Routes between AS are discovered using
Border Gateway Protocol (BGP)

= Based on trust, for instance, any AS can
announce any |IP address range

2

* There are numerous ways to attack Internet routing

Redirected traffic to UK Atomic Weapons Establishment
Q% " In 2013, Ukrainian ISP announced route
prefixes to British Telecom AS

Houston, TX, US
Softlayer Kiev, UA
Vega — RETN

I * Traffic of some UK customers was

g \\ .\\
GB Sy \ Frankfurt, DE Y

e SN P R N redirected to Ukraine, including
UK’s Atomic Weapons Establishment

= Senders have no control over the taken routes

= Routers on path can read and modify data

Scion Internet Architecture

. . . . - . urent Chuat - Markus Legner -

= Scion is a new architecture for inter-domain routing ;;-,gaegmaﬁ';fggegaﬁanPemg

- Path control, e.g., geofencing

- Multipath communication I The Complﬂe

- DDoS protection GU|de

_ to SCION
» Research and commercial deployments From Design Prindiplesto Formal
Verification
@Springer

4

Veriied SCEON

Formal end-to-end verification
of security and correctness

Isolation Domains

ASes are organized into
isolation domains with
independent control
planes and root of trust

Scion Routing

= Path exploration e

- Paths are sequences of server
signed hop fields '

- Each hop field carries
routing information for
one AS (input and output
ports)

= Path registration with
path server

= Path selection

- Path is stored in packet
header

Scion Forwarding

= Path is stored in packet
header

= Consisting of
up segment,
core segment, and down
segment

Security and Correctness

" Protocol-level properties

- Path validity: Constructed paths are valid and reflect the routing decisions by on-path
ASes.

- Path authorization: Packets travel only along previously authorized paths
- Detectability: An active attacker cannot hide their presence on the path

= Code-level properties
- Safety: No run-time errors
- Correctness: Routers and servers implement protocol correctly
- Progress: Required 1/O happens eventually
- Secure information flow: Code does not leak information about crypto keys

9

Mathematical model Mathematical model
of entire network of border router

Refinement

Refinement

Equivalence

Verification : {-*‘...‘m‘“"’z 5 m_,gm‘*

Router specification Router implementation

10

Design Model

" Formalize the design model * Model describes

. System:
as transition system

Border router

var in: Multiset<Message>
var out: Multiset<Message>

initially

in={}
out={}

event process(M, M’)
guard M € in A valid(M) A

reply(M, M’) Environment:
action Network
in:=in\{M} End hosts

out := out U {M’} Attacker

11

Stepwise Refinement

" Design model is developed by stepwise refinement
" Prove properties of most abstract model

=" Fach refinement

- Incorporates additional system requirements or
environment assumptions

- Preserves properties of more-abstract system
- |Is tool-checked in Isabelle

= Strategy: strengthen attacker while increasing protection of paths

12

Communication channels Hop field format Attacker

-
-
()
&
O

=

(S
()

e

A(ﬁ A 2)

P

@: Message set %1 7 Neighbor ASes @: Fields protected by MAC

Attacker Model

" | ocalized, colluding Dolev-Yao attacker model

= Attacker:

- Actively controls some ASes
- Can observe, block, and inject messages
- Can eavesdrop globally

= Cryptography is assumed to be perfect

Results of Protocol Verification

= A formal model of the network
components and their environment

= Model serves as formal
specification for the
implementation

= Proofs of the desired properties
under the assumption that each
component satisfies its
specification

= 16,100 lines (models and proofs)

" Improved understanding of
protocols and properties

= Revealed design flaws that enabled
five different security attacks

= |[ssues were found during modeling
and formalization

Mathematical model Mathematical model
of entire network of border router

Refinement

Refinement

Equivalence

Verification : {-*‘...‘m‘“"’z 5 m_,gm‘*

Router specification Router implementation

16

Scion Implementation

" Open-source implementation
- 35kloc of Go (Router: 4.7kloc)
- Uses concurrency, async, globals

= Verify safety, functional correctness,
progress, secure information flow

= Assume correctness of external libraries,
Go compiler, OS, hardware

Scion libraries el
libraries

Go standard libraries

17

Gobra: Sound Verification for Go

func indexOf(l [Jint, i, val int) (res int)

requires 0 <=i && i <len(l) = No run-time errors
requires forall jint ;. i <=j &&j <len(l) ==>acc(&l[|])

|
decreases len(l) - i No data races

ensures forall j int :: i <= | && j < len(l) ==> acc(&I[j]) " Functional properties
ensures res |= -1 ==> i <=res && res < len(l) && . .
(forall jint - i <= 8&] < res ==> [j] I= val) && [res] == val [ISREUUNUELE]
= |/O behavior
ifl[i]==val {returni}

elseifi>=len(l)-1 {return-1} = Secure information flow
else { return indexOf(l, i+1, val) }

{

}

18

Gobra Toolchain

func main(a []int) int {
var b int = a[3]

Error: Slice access a[3] might
be out of bounds

Program
translation

Error translation

VIiPER

method main(a: Ref)
returns (res: Int)
requires slice(a) ...
{
bar b: Int
b :=lookup(a, 3)

Error: Insufficient permission
to access loc(a, 3).val

Permissions

= Associate each heap location with a permission
" Permissions are held by method executions

" Access to a memory location requires permission

func indexOf(l [Jint, i, val int) (res int)

requires foralljint:: i <=j&&j<len(l) ==>acc(&l[j])
ensures foralljint:: i <=j &&j <len(l) ==>acc(&I[j])

" Permissions can be transferred, but not duplicated or forged

" Predicates abstract over concrete permissions

20

/O Permissions

" Permissions and predicates can be
used to reason about resources

func write(value string)

» Here: permission to perform an requires writelO(value)
|/O operation

/O Behavior as Petri Nets

" Adaptation of work by Penninckx et al.

valid(M)

= Petri nets specify permitted I/O behavior

- Traces of basic I/O operations T e T
- Sequences, parallelism, non-determinism —valid(M)

. . redicate router(T
= Petri nets are encoded as (recursive) pVM 3T, T, e ()1

predicates readlO(T4,M,T,) *
(valid(M) = writelO(T,,M,T3)) *
(— valid(M) = nop(T,,T3)) *
router(T,)

}

22

Specification of I/O Behavior

= Basic |/O operations
- Require I/O permission valid(M)
- Require token in appropriate place

- Advance token T -
2
—valid(M)

func write(value string)
requires token(T) * writelO(T, value, T')
ensures token(T’)
predicate router(T,) {
. . VM 3T, T, e
" Method precondition characterizes readIO(T,M,T,) *

permitted |/O behavior (valid(M) = writelO(T,,M,T5)) *
(— valid(M) = nop(T,,T3)) *
func main() router(T;)
requires token(T) * router(T) }

From Design Model to 1/O Specification

= Refine design model to have an event for each basic |/O operation

I/0 event write(val) func write(value string)

" Encode entire event system as recursive predicate

predicate system(T,, state) {
(Vargs e guard(args, state) =
3T, e oplO(T,,args,T,) * system(T,, state’)) *

event drop(M)
guard —valid(M) predicate router(T,, buf) {
action (VM e —valid(M) = router(T,, buf\{M })) *

buf := buf\ {M }

24

Status of Code Verification

= Completed verification of SCION = |dentified 13 confirmed issues
router (4,700 LoC) related to memory safety,
- Memory safety functional correctness, and

- Functional correctness |/O bEhaViOr
- 1/O behavior (plus 2 performance issues)

- Termination

= Despite extensive code reviews,
= 13,400 lines of annotations testing, and fuzzing
(2.8 LoS per LoC)

= Verification is currently being
= Required only three code changes introduced into the continuous
integration

Mathematical model
of entire network

Refinement

= Developed by stepwise
refinement

= \erified in Isabelle

" Transition system
encoded as I/O
specification

= \erified in Isabelle

Mathematical model
of border router

" Properties encoded in
permission logic

= Verified in Gobra/Viper

Equivalence

Verification HT 2 et

L]
< th;u\f: ettt "d: *
o 4 YA 1&”‘ 8
a"' g+ ’ ""
0\ % |). pane * 8 o
Router specification Router implementation

26

