Peter Muller
Joint work with Marco Eilers and Thibault Dardinier

PROVING INFORMATION FLOW SECURITY
FOR CONCURRENT PROGRAMS

ETHzurich

Microsoft Azure Breach, April 2021

"Our investigation found that a consumer signing system crash in April of
2021 resulted in a snapshot of the crashed process (“crash dump”). The
crash dumps, which redact sensitive information, should not include the
signing key. In this case, a race condition allowed the key to be present

in the crash dump (this issue has been corrected).”
Microsoft Security Response Center

Secure Information Flow

= Programs maintain secret state such as crypto keys

public secret
state state

= High-level goal.
Verify that attackers cannot learn secrets by interacting with the implementation

Secure Information Flow: Value Channel

high-sensitivity (secret)

low-sensitivity (public)

L

def compute(h: int, 1: int):

if h > 0:
res =1
else:

res = 2

return res

]

Does res leak information about h?

Secure Information Flow: Timing Channel

Does the
execution time
def compute(h: int, 1: int): leak information
res = 0 about h?
if h > 0:
res += 1
res += 4
res -= 7
return 1

Reasoning About Timing Channels

h' | h2 | » Proving the absence of timing channels is
extremely difficult
- Compiler optimizations
- Value-dependent duration of CPU instructions
- Complex hardware: pipelining, caching, etc.

@ * |n many scenarios, attackers cannot observe
execution time
- Data is published only after computation

- Time measurement is too imprecise
(e.g., due to a laggy network)

Our attacker model:

Attacker may observe final results,
but not intermediate states or timing

Shared-Memory Concurrency Ruins Everything

Secret-dependent Secret-independent h’ h?
execution time execution time 4 300
while i < h: while j < 100:
i+=1 j +=1
shared = 6 shared = 7

return shared

res’ res?

Shared-Memory Concurrency Ruins Everything

i=-o0 j=o
while while j < 100:
i +=] +=1

Gharea - 7>
retur @

Our goal:
Verify the absence of value channels
without reasoning about timing

Existing (Modular) Solutions

Insecure
i=20 j =0
while(@ < h) while j < 100:
i+=1 j +=1 influences
shared = 6 shared = 7
return shared °
influences
Secure shared = 1 ‘
i=20 j =0
while i < h: while j < 100:

i+=1 i +=1
Cshared += 6O @
return shared °

Key idea:
The thread schedule does not influence
the final result if modifications commute

Our Solution: Commutativity

Insecure

i=20 j =0

while i < h: while j < 100:

i = 1 +=
shared = 6 shared = 7
return shared °
influences

Secure shared = 1 ‘

i=20 j =0

while i < h: while j < 100:

= = influences
shared += 6 shared += 7
return shared o

Basic Solution

shared = ..]
atomic: atomic:
shared.A() shared.B()
atomic:
shared.C()

(1) Prove: shared has the same initial value in both executions

(2) Prove: the two executions perform the “same” updates

(3) Prove: the updates commute

Assume: shared has the same final value in both executions

14

Basic Solution)

shared = 0]
atomic: atomic: 0
shared += 1 shared += 5

atomic:
shared += 3

°Prove: shared has the same initial value in both executions

°Prove: the two executions perform the “same” updates

°Prove: the updates commute

Assume: shared has the same final value in both executions

15

Basic Solution

shared =1)
atomic: atomic: 1
shared.A() shared.B()
atomic: if h > 0:
shared.C() atomic:
shared.B()

°Prove: shared has the same initial value in both executions

°Prove: the two executions perform the “same” updates

(3) Prove: the updates commute

Assume: shared has the same final value in both executions

16

Basic Solution

shared = 0

atomic: atomic: 0
shared += 1 shared *= 2

atomic:
shared += 3

°Prove: shared has the same initial value in both executions

oProve: the two executions perform the “same” updates

°Prove: the updates commute

Assume: shared has the same final value in both executions

17

CommCSL.:
A concurrent separation logic
with commutativity reasoning

Relational Reasoning

= Assertions relate two states

PQ:=b|lemp|e—e|P*Q]... | Low(e)

————

Unary assertions need to hold e evaluates to the same
individually in both states value in both states

» Judgment of the logic relates two program executions

F{P}c{Q}
— 3

Two executions of ¢ from a pair of initial states
that together satisfy P will not abort and, if both
terminate, the resulting states will satisfy Q

19

Relational Reasoning: Example

if h >0
h>0

b :=1/ 2 * 2
r:=1% 2

b+r=I

else:

b+r=I

Low(l) —

b+r=1 A Low(l) -

framing

Low(b +r) ‘
\Y

Low(l)

if h >0

h>0 A Low()

b :=1/ 2 * 2
r:=1% 2

Low(b)

else:

~(h>0) A Low(l)

b :=0
r:=1

Low(b)

If-rule requires that
if-condition is low or
postcondition is unary

Low(b) @

20

Data Abstraction in Separation Logic

class List {
elem: Int
next: List

Separation logic specifies functional behavior

in terms of an abstraction of the concrete data
structure

void appendBack(e: Int)

requires list(this, s
ensures 1ist(this,
{ ..}
}

g—

/A
\liiﬁthr: List, s(:ésﬂz>z

ptr.elem »e * ptr.next » n *
(n=null = s =1 1]) *
(n # null = s[@] = e * list(n, s[1..])

We reason about commutative actions on
the level of these abstractions

A resource is the abstraction of a shared
data structure

resource Sequenee-s
type @
invariant m , V)

actions:

<:§EE§hd(v, e) = v {jzgr:>

21

Proof Obligation 1: Same Initial Value in Both Executions

» Qur verification technique

- Checks that shared data is low before concurrent accesses
- Guarantees that shared data is low after concurrent accesses

* These points in the execution are indicated by a share block-statement

Prove shared data structure
has same initial value

has same final value

F{P} c {Q}
F { I(x,v) * Low(v) * P } share x in ¢ { 3v’ e I(x,v’) * Low(v’) * Q }
A _A
L L

Assume shared data structure

For simplicity, we assume that

there is only one resource,
which is implicit in the rule

22

Proof Obligation 2: Same Updates in Both Executions

* The shared data structure may be updated only through atomic statements

Every atomic statement
performs one action

=
E{P*I(xv)} c {Q* I(x,f(v,e)) }

F { P * acs"(args) } atomic ¢ { Q * acs"(args U* {e}) }

= Without loss of generality, we assume that our resource has exactly one action f
(multiple actions can be simulated via an additional parameter)

= We collect for every execution the argument tuples of the actions it performs
- As a multiset of argument tuples
- This multiset is stored in a separation logic resource acs (with fraction r)

23

Proof Obligation 2: Same Updates in Both Executions

= Actual check is performed when the resource is un-shared

Initially no actions were
performed

Multiset of performed actions is
the same in both executions

— O

e

F { P * acs'(*) } ¢ { Q * acs'(args) * Low(args) }

F { I(x,v) * Low(v) * P } share x in c

{ v’ e I(x,v’) * Low(Vv’) * Q }

» This "delayed” check avoids the need to closely align the two program executions

24

Proof Obligation 3: The Updates Commute

» Commutativity is checked for each resource declaration

resource R:
type
invariant
actions:

T
I(p, V)

f(v, e) = ..

Ve, e’ o f(f(vJ E), e,) = f(F(V) e’), e)

Recall that we consider

» Checking commutativity of the (abstract) action is much simpler than of concrete

Implementations

only a single action

resource Sequence:

type Seq
invariant list(x, v)
actions:

append(v, e) = v ° [e]

25

Limitations

Secure . -
shared = new List()
i=0 j =0 []
while i < h: while j < 100:
i +=1 jo+=1 add(6)
atomic: atomic:
shared.add(6) shared.add(7)

return sort(shared)

oProve: shared has the same initial value in both executions

°Prove: the two executions perform the “same” updates [6,7]

°Prove: the updates commute

Assume: shared has the same final value in both executions

26

Key idea:
Commutativity modulo abstraction

Commutativity Modulo Abstraction

shared = ..
. (0}
atomic: atomic:
shared.A() shared.B()
atomic: A L LB
shared.C()
B A
(0) Define: abstraction o of shared data structure O — C
(1) Prove: shared has the same initial abstract value o

(2) Prove: the two executions perform the “same” updates
modulo abstraction

(3) Prove: the updates commute modulo abstraction

Assume: shared has the same final abstract value in both executions
28

Commutativity Modulo Abstraction

Secure

shared =

i=20

while i < h:
i+=1

atomic:
shared.add(6)

new List()

j =20

while j < 100:
j +=1
atomic:

shared.add(7)

return sort(shared)

(0) Define: abstraction o of shared data structure:

multiset of integers

Prove: shared has the same initial abstract value

Vv
M/Prove the two executions perform the “same” updates

modulo abstraction

@ Prove: the updates commute modulo abstraction

[]

add(6)

[6.7]

Assume: shared has the same final abstract value in both executions

[]

add(7)
add6)

add(7)

[7.6]

29

Abstract Commutativity

= Abstraction a is chosen depending
on what information about a shared
data structure needs to be leaked

= |tis part of the resource declaration

resource Sequence:
type Seq
invariant list(x, v)
abstraction multiset(v)
actions:
append(v, e) = v ° [e]

= Other use cases might abstract a
list to its length, sum of elements,
mean of elements, etc.

shared = new List()

while i < h:
i+=1

atomic:
shared.add(6)

while j < 100:
j o+=1

atomic:
shared.add(7)

return sort(shared)

V'

30

Abstract Commutativity: Examples

shared = new Map()

while i < h:
i+=1

atomic:
shared.put(1,8)

return shared.keySet()

while j < 100:
j +=1

atomic:

shared.put(1,h)

\V

shared = new Map()

if h > 0:
atomic:
shared.put(1,8)

return shared.keySet()

if h <= 0:
atomic:
shared.put(1,h)

v

resource Map:
type K—V
invariant map(x, V)
abstraction dom(v)
actions:
put(v, key, val) = v[keymval]

= By the end of the parallel branch,
both executions performed exactly
one put operation, with key 1

» They performed the same updates
modulo abstraction

» The “delayed” check succeeds

31

Adjusted Proof Obligations —

F{P *acs'(J¥) } ¢ { Q * acsi(args) * Low(args) }

F { I(x,v) * Low(v) * P } share x in ¢ { 3v’ e I(x,v’) * Low(Vv’) * Q }

32

Implementation: HyperViper

= Automated, SMT-based verifier

- Based on Viper
verification infrastructure

- Relational reasoning using
Modular Product Programs

= Supports dynamic thread creation,
multiple shared resources,
observable events, etc.

lockType IntLock {

type Int

(1, v) = [l.lockInt |-> ?cp && [cp.val |-> v]]

alpha(v): Int = 0

actions = [(SetValue, Int, duplicable)]

action SetValue (v, arg)

true
{ arg }
nolLabels = 2

}

worker (1: Lock, 1bl: Int)
lowEvent && sguard[IntLock, SetValue] (1,
sguardArgs [IntLock, SetValue] (1, Set(lbl))
sguard[IntLock, SetValue] (1, Set(lbl))

allPre[IntLock, SetValue] (sguardArgs[IntLock,SetValue] (1, Set

var v: Int

v := 1bl

with[IntLock] 1 performing SetValue(v) at 1lbl {
l.lockInt.val := v

}

print (i: Int)

lowEvent && low (i)

33

Evaluation

Example Data structure Abstraction LOC | Ann. T
Count-Vaccinated Counter, increment None 44 46 | 10.15
Figure 2 Integer, add None 129 95 | 10.90
Count-Sick-Days Integer, add None 52 45 | 13.67
Figure 1 Integer, arbitrary Constant 29 20 | 1.52
Mean-Salary List, append Mean 80 84 | 14.10
Email-Metadata List, append Multiset 82 75 | 16.70
Patient-Statistic List, append Length 73 70 | 4.92
Debt-Sum List, append Sum 76 81 | 14.45
Sick-Employee-Names Treeset, add None 105 | 113 | 28.43
Website-Visitor-IPs Listset, add None 74 69 | 6.20
Figure 3 HashMap, put Key set 129 96 | 10.37
Sales-By-Region HashMap, disjoint put None 129 | 104 | 12.37
Salary-Histogram HashMap, increment value | None 135 | 109 | 13.78
Count-Purchases HashMap, add value None 137 109 | 11.73
Most-Valuable-Purchase HashMap, conditional put | None 140 | 118 | 17.87
1-Producer-1-Consumer Queue Consumed sequence 82 88 | 3.23
Pipeline Two queues Consumed sequences | 122 100 | 3.66
2-Producers-2-Consumers | Queue Produced multiset 130 | 134 | 845

34

Conclusion

Shared-Memory Concurrency Ruins Everything Basic Solution
Secret-dependent Secret-independent h? h?) shared = ... '
execution time execution time 4 300 atomic: atomic:
| 7 - shared = A shared = B
~ L atomic: A
N Lo shared = C

while 1 < h:,.T

1+=1 Q

shared = 6

while j < 1007

shared = 7

return shared o ¥ I

(1) Prove: shared has the same initial value in both executions

1 2
res res . . S —
(2) Prove: the two executions perform the “same” updates

(3) Prove: the updates commute

Assume: shared has the same final value in both executions

» CommCSL is a relational concurrent separation logic with support for
(abstract) commutativity-based information flow reasoning

* Modular reasoning about value sensitivity for concurrent programs
- Independently of timing, sound on real hardware

e g

35

More Details in the PLDI 2023 Paper

= Unique actions for
asymmetric concurrency
- Weaker commutativity requirement

= Formalization and soundness
proof in Isabelle/HOL

CommCSL: Proving Information Flow Security for Concurrent
Programs using Abstract Commutativity

MARCO EILERS, ETH Zurich, Switzerland
THIBAULT DARDINIER, ETH Zurich, Switzerland
PETER MULLER, ETH Zurich, Switzerland

Information flow security ensures that the secret data manipulated by a program does not influence its
observable output. Proving information flow security is especially challenging for concurrent programs, where
operations on secret data may influence the execution time of a thread and, thereby, the interleaving between
threads. Such internal timing channels may affect the observable outcome of a program even if an attacker
does not observe execution times. Existing verification techniques for information flow security in concurrent
programs attempt to prove that secret data does not influence the relative timing of threads. However, these
techniques are often restrictive (for instance because they disallow branching on secret data) and make strong
assumptions about the execution platform (ignoring caching, processor instructions with data-dependent
execution time, and other common features that affect execution time).

In this paper, we present a novel verification technique for secure information flow in concurrent programs
that lifts these restrictions and does not make any assumptions about timing behavior. The key idea is to prove
that all mutating operations performed on shared data commute, such that different thread interleavings do
not influence its final value. Crucially, commutativity is required only for an abstraction of the shared data
that contains the information that will be leaked to a public output. Abstract commutativity is satisfied by
many more operations than standard commutativity, which makes our technique widely applicable.

We formalize our technique in CoMmMCSL, a relational concurrent separation logic with support for
commutativity-based reasoning, and prove its soundness in Isabelle/HOL. We have implemented Comm-
CSL in HYPERVIPER, an automated verifier based on the Viper verification infrastructure, and demonstrate its
ability to verify challenging examples.

36

