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Symbolic Transition Systems

• Symbolic transition systems (over a background theory) are

triples S = (X , I (X ),T (X ,X ′)), where: (i) X is a set of

variables; (ii) X ′ is a ‘duplicate’ of X , (iii) I (X ), T (X ,X ′) are

formulae defining the initial states and the possible dynamic

of the system.

• Formalism for modeling software, hardware, etc. . .

• A simple example with integer arithmetic:

• X = {x , y};
• I (X ) ≡ x = 1 ∧ y > 0

• T (X ,X ′) ≡ x ′ = x + y ∧ y ′ = y

The model describes a simple system in which the value of x

is increased at every step by a fixed value y .
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Given the system S defined by:

• X = {x , y};
• I (X ) ≡ x = 1 ∧ y > 0

• T (X ,X ′) ≡ x ′ = x + y ∧ y ′ = y

The formula x > 0 is an invariant of the system. It is not,

however, an inductive invariant.

An inductive invariant for the property is x > 0 ∧ y > 0, which can

be automatically synthesized by e.g. SMT-based model checkers.
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Parameterized systems

A parameterized systems is a systems in which the number of some

components is left unbounded; e.g.: a client-server protocol with

an unknown numbers of clients

•
•

•

•

•
•

•

server . . .

Typical properties of parameterized systems (e.g. mutual exclusion)

should hold independently by the numbers of components.
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Formalization of Parameterized systems

• For the modelling of parameterized systems, quantifiers are

needed in the formulae defining S ;

• unbounded components can be modeled with a simple sort

with equality (called the index sort);

• state variables are functions from the index sorts to some

element sort.

For example, consider a protocol with two parameterized

components: tracks (that can be locked or free) and routes (that

can be active or inactive). A possible initial formula for the

protocol could be

∀t : track.(state[t] = free) ∧ ∀r : route.(state[r ] = inactive)
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A railways example/2

An example of a transition formula:

∃r : route
(
state[r ] = inactive∧

∀t1 : track(Usedby(t1, r) → state[t1] = free)∧
∧ state ′[r ] = active ∧ ∀s : route(s ̸= r → state ′[s] = state[s])

∀t : track .
(
Usedby(t, r) → state ′[t] = locked

∧ ¬Usedby(t, r) → state ′[t] = state[t]
)
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Suppose we define

NotCompatible(r1, r2) ⇐⇒
r1 ̸= r2 ∧ ∃t : track .Usedby(t, r1) ∧ Usedby(t, r2)

Then, a candidate property for the protocol can be:

∀r1, r2 : route
(
NotCompatible(r1, r2) →

¬(state[r1] = active ∧ state[r2] = active)
)

This is still not inductive; an inductive strengthening is

∀r : route, t : track(Usedby(t, r) ∧ state[t] = free)

→ (state[r ] ̸= active)
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Challenges

• In general, the invariant checking problem of symbolic

transition systems (also without quantifiers) is undecidable;

• generation of quantified inductive invariant is scarcely

supported;

• (un)satisfiability of first-order logic is an undecidable problem.

Yet...

• efficient algorithms for model checking systems without f.o.

quantifiers;

• many methods to check the (un)satisfiability of f.o. formulae.
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Automatic verification of Systems with quantifiers

We have developed two algorithms for the automatic discovery of

(universally quantified) inductive invariants:

• A first algorithm is based on the following ’practical’ intuition:

‘Either a counterexample occurs for a small value of the

parameter, or the system is safe always for the same reason

(at least after a certain threshold value)’;

• A second algorithm is an extension of IC3 for quantified

reasoning and theories: it has more theoretical properties, but

in practice is inferior to the previous one.
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A source of help: ground instances

From a parameterized systems

(whose symbolic description

requires quantifiers)...

•
•

•

•

•
•

•

server . . .

..to a ground instance, where

quantifiers are expanded in a

finite set.

•
•

•

•

•
•

•

•server

Ground instances are under-approximation of the parameterized

system, but they are a useful source of heuristics, and can be

model checked efficiently.
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Generalization

• After a ground instance is checked, an inductive invariant for

it is provided by the model checker;

• our procedure will try to lift such invariant to the

parameterized (quantified) case;

• the validity of the new candidate invariant will then be

checked by incomplete but efficient instantiation strategies.
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AIDA: A tool for modeling, generating and

verifying Safety Logic

14 / 27



Railways Logic

• The Italian railways system is still relay-based. The safety of

the control logic is ensured by the expertise of of railways

engineer.

• There is a request for transfer to a computer-based system,

where the safety can be also ensured by formal methods.

• Ideally, given a description of the logic, we would like to

automate the proof of its safety.
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Railways and AIDA

There is an ongoing collaboration between FBK and RFI; a tool

(AIDA) for the future design of train stations:

• engineers write systems specs in pseudo-natural language:

’e.g. when a train is arriving, activate the correct switches’;

• the design is then combined with a configuration: e.g.

Trento’s station has a certain number of tracks, some train

uses a certain route, and so on;

• code is automatically generated for the functioning of every

component of the station;

• ‘standard’ model checking can be now used to ensure

safety-critical properties of the station.

Abstract Design Configuration Model Model Checking

automatic steps are in red
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AIDA
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Verification on generated code

The verification of the generated code can:

• Ensure that the code satisfies the specifications;

• Check the validity of some general properties (e.g. no trains

collide);

• Generate counterexamples that are useful for testing.

However, this would check only that the particular configuration is

correct or not.
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Case study: RFI project /2

The design of the components is shared by all the different

stations:

• Many properties should hold independently of the

configuration!

• For example, the fact the two train never collide should be

true independently of the number of lights, tracks, ...

• a parameterized model can be obtained much earlier in the

verification process:

Abstract Design
Parameterized

Model

Parameterized

Model Checking
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Our Goal

Given an abstract design of the railway logic, we would like to use

to check automatically that:

i. the generated code satisfies the requirements independently

from the configuration, and

ii. the design of the logic always satisfies some properties.

It is possible that for (i), invariants can be inferred automatically

by patterns. For (ii) instead, the properties are dependent of the

many interaction between the different components of the system.
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Towards Dafny
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Why Dafny?

It should be easy to generate Dafny code from the SysML models:

• Each class of the logic can be represented by a class in Dafny;

• transitions of the class are represented by Dafny methods;

• the body of such methods is filled with an abstract version of

the generated code;

• FRS are translated as a set of pre- and post- condition;
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Verification Dafny

• After the classes have been defined, we define a Station to be

a set of class instances.

• To verify that a certain property hold, we check whether it is

preserved by all methods of the classes.

• This may not be the case, as we may need a stronger

(inductive) property...
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