Towards an Automatic Proof of the Bakery Algorithm

Aman Goel Amazon Web Services
Stephan Merz  Inria Nancy & LORIA
Karem Sakallah  University of Michigan

WG 2.3 meeting
Trento, October 2023

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 1/11



Overview

@ Verification of parameterized algorithms is undecidable

» verify small instances or use interactive theorem proving

@ Automatic synthesis of inductive invariants

» inductive invariants serve as certificates of correctness

» IC3PO: learn invariants from finite instances

@ Can this be successfully applied in practice?

» benchmark problem: Bakery mutual exclusion algorithm (Lamport 1974)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 2/11



IC3PO in a Nutshell

protocol ' finite __no: saturation yes inducjcive
+ property instance Increase size reached? invariant
IC3 model finite-state quantified
Checking invariant ~ clause learning
IC3PO
property| violated

counter- A. Goel, K. Sakallah. On Symmetry and Quantification:

A New Approach to Verify Distributed Protocols. NFM 2021

example

Exploit structural regularity for generalizing invariants from finite instances

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 3/11



From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc

C(i) = ~C(j)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 4/11



From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc

C(i) = ~C(j) ~ Vp,q € Proc: C(p) ANp # q= —~C(q)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023

4/11



From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct 7,7,k € Proc
C(i) = ~C(j) ~  Vp,g€Proc:C(p) Ap #q= —C(q)
A(i) = B(j) V B(k)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023

4/11



From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc
C(i) = ~C(j) ~  Vp,q € Proc: Clp) Ap #q= —C(q)
A(i) = B(j))VB(k) ~ Vpe€ Proc:A(p) = 39 € Proc:p # qAB(q)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023

4/11



From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc
C(i) = ~C(j) ~  Vp,q € Proc: Clp) Ap #q= —C(q)
A(i) = B(j)VB(k) ~ Vpe&Proc:A(p) = 39 € Proc:p # qAB(q)

@ Quantifier synthesis for totally ordered domains

» take into account order relation (finite instance N = 3)

P(1) = Q(2) AQ(3)
P(2) = Q(3)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023

4/11



From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc
C(i) = ~C(j) ~  Vp,q € Proc: Clp) Ap #q= —C(q)
A(i) = B(j)VB(k) ~ Vpe&Proc:A(p) = 39 € Proc:p # qAB(q)

@ Quantifier synthesis for totally ordered domains

» take into account order relation (finite instance N = 3)

58 zgg;AQ“) ~ Vij€0.N:P({i)A0<i<j= Q)

Quantifiers formally express symmetries in properties

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023

4/11



The Bakery Algorithm

variables num = [i € P — 0], flag = [i € P + false]
process self € P:
variables unread = {}, max = 0;
p1: while true:
unread := P\ {self }; max := 0; flag[self] := true;

p2: for nxt € unread:

if num{nxt] > max: max := numnxt|;

unread := unread \ {nxt};

p3:  numiself] :> max;
p4:  flag[self] := false; unread := P\ {self };
pS: for nxt € unread:
await —flag[nxt];
p6: await (num[nxt] = 0) V self < nxt;
unread := unread \ {nxt}
cs: skip;

p7:  numiself] :=0

numli]: ticket number of process i
flagli]: process i draws a ticket

iterate over processes to determine
highest ticket number currently in use

pick some higher ticket number
iterate over processes:

— make sure the process doesn’t draw a ticket
— wait for the process to have lower priority

signal exit by giving up ticket

P21.N i< 2 numl(i] < num(j] VvV (numli] = num[j] Ni <j)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 5/11



Formal Specifications of the Bakery Algorithm

e Landmark algorithm for ensuring mutual exclusion

» intuition: organize a queue where customers draw tickets

@ Effect of concurrent reads and writes

@ atomic reads and writes: memory operations never interfere

@ safe registers: a read overlapping a write returns an arbitrary (type-correct) value

e Existing TLA* specifications and hand-written proofs

» we will discuss the non-atomic version, but the results apply to both

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 6/11



Applying IC3PO to the Bakery

@ Encode existing TLA™ specification in Ivy

» typed, relational input language, e.g., represent i € unread[j| by unread(i, )

@ Run IC3PO model checker for proving mutual exclusion

» initial domain size: 3 processes, 3 ticket numbers
» saturation at 4 processes, 3 ticket numbers

» 42 quantified invariants generated

@ Rewrite IC3PO invariant as a TLA* formula

» group similar clauses for different control points, reorient implications

» use TLAPS to check that the TLA* version of the invariant is inductive

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 7 /11



Two Invariants for the Non-Atomic Bakery

Minv £ Vi € P : Milno(i)

HIno £ TypeOK AVi € P : HlIno(i)

Hllno(i) 2
Al Apcli] € {"p1”,“p2’} = numli] =0
A2 A numli] = 0 = pcli] € {*p1”,“p2",“p3", “p7"}
B1  Apcli € {2, 3} = flagl
B2 A flaglil = peli] € {72, 03, o4}
o [ Apelil € (75,6}
= Vj € (P \ unread[i]) \ {i} : After(j, i)
A A peli] = “p6”
D AV pe[nxt[i]] = “p2" A i & unread|nxt]i]]
V pe[nxt[i]] = “p3
= max[nxt[i]] > numli]
E A pcli] = cs” = Vj € P\ {i} : After(j, i)

After(j,i) 2
A numli] > 0
AV pelj] = p
V pclj] = “p2” A (i € unread|(j] V max[j] > numli])
V pelj] = “p3” A max[j] > numli]
V A pelj] € {“p4”,“p5”, “p6"} Ni K j
A pclj] € {"p5”,“p6’} = i € unread|j]
v pelj] = o7
A. Goel, S. Merz, K. Sakallah

Mino(i) &
a A pcli] € {p4”,“p5",“p6”, “cs”} = numli] # 0
b1 A pcli] € {*p2’,"p3"} = flagli]
A peli] € {"p5",“p6”} Aflagli] = Vj € P\ {i} :
b2 A pelj] € {p5”,“p6"} = i € unreadlj]
A pclj] = “p6” = i # nxt[j]
A pclj] = “es” = i = nxt[j] Vj = nxt|j]
A peli] € {"p5",“p6”} = Vj € P\ unread|i] :
o A pclj] = p2" = i € unread|j] V max[j] > numli]
A pelj] = “p3” = max[j] > numli]
A pclj] € {"p#,“p5",p6"} = i K j
a1 A pcli] = “p6” A pe[nxt[i]] = “p2”
= i € unread|nxt(i]] V max[nxt[i]] > num|i]
1o A pelil = 9o A pelnstll] = *p3" A laglntll]
= max[nxt[i]] > numli]
Apeli] = cs” = Vj € P\ {i}:
A pCU] ="p2=i€ uﬁreadU] \% max[j] > numli
o A pelj] = “p8” = max[j] > numli]

Towards an Automatic Proof of the Bakery Algorithm

Apelj] = p4 =i <

Apelj] € {05, 96"} = i < j Ai € unread]j]
A pelj] # “es”

WG 2.3 2023

8/11



Comparing the Two Invariants

@ The two invariants are structurally similar

» based on the same atomic propositions

» superficial syntactic differences due to generation from CNF formulas

@ HInv uses auxiliary predicate After(j, i)

» the implications C and E (resp., ¢ and e) assert similar conditions

» auxiliary predicate abstracts this similarity

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 9/11



A Closer Look at Parts B / b

B1 A pcli] € {*p2’,p3"} = flagli] b1 A pcli] € {*p2’,p3"} = flagli]

B2 Afaglil = pelil € ot 02, 03, pe7} A flagli] A peli] € {08, 96} = j € P\ {i}
b2 A pclj] € {“p5”,“p6"} = i € unread|j)

A pclj] = “p8” = i # nxt]j]

A pclj] = “cs” = i = nxt[j] V j = nxt[j]

@ Assertions about the flag being set

» B1 and b1 are identical

» B2 implies b2

@ The computer-generated invariant is weaker

» inspecting the code shows that the flag cannot be set beyond p4
» IC3PO propagates predicates using backward reachability analysis

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 10/11



Summary

@ IC3PO successfully generated an inductive invariant for Bakery

» based on existing specifications, faithfully rewritten in Ivy

» inductive invariants serve as certificates of correctness

@ The synthesized invariant is remarkably similar to a human-written one

» both capture the relevant arguments for proving mutual exclusion

» machine-generated invariant is a little more permissive

@ Perspectives

» directly handle interesting fragment of TLA": avoid manual encoding in Ivy

» handle more case studies and assess scalability

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023 11/11



