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Overview

@ Verification of parameterized algorithms is undecidable

» verify small instances or use interactive theorem proving

@ Automatic synthesis of inductive invariants

» inductive invariants serve as certificates of correctness

» IC3PO: learn invariants from finite instances

@ Can this be successfully applied in practice?

» benchmark problem: Bakery mutual exclusion algorithm (Lamport 1974)
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IC3PO in a Nutshell

protocol ' finite __no: saturation yes inducjcive
+ property instance Increase size reached? invariant
IC3 model finite-state quantified
Checking invariant ~ clause learning
IC3PO
property| violated

counter- A. Goel, K. Sakallah. On Symmetry and Quantification:

A New Approach to Verify Distributed Protocols. NFM 2021

example

Exploit structural regularity for generalizing invariants from finite instances
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From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc

C(i) = ~C(j)
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From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains
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C(i) = ~C(j) ~ Vp,q € Proc: C(p) ANp # q= —~C(q)
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From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct 7,7,k € Proc
C(i) = ~C(j) ~  Vp,g€Proc:C(p) Ap #q= —C(q)
A(i) = B(j) V B(k)
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From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc
C(i) = ~C(j) ~  Vp,q € Proc: Clp) Ap #q= —C(q)
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From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc
C(i) = ~C(j) ~  Vp,q € Proc: Clp) Ap #q= —C(q)
A(i) = B(j)VB(k) ~ Vpe&Proc:A(p) = 39 € Proc:p # qAB(q)

@ Quantifier synthesis for totally ordered domains

» take into account order relation (finite instance N = 3)

P(1) = Q(2) AQ(3)
P(2) = Q(3)

A. Goel, S. Merz, K. Sakallah Towards an Automatic Proof of the Bakery Algorithm WG 2.3 2023

4/11



From Ground Instances to Quantified Formulas

© Quantifier synthesis for symmetric domains

» assume the following clauses appear for all distinct i, j, k € Proc
C(i) = ~C(j) ~  Vp,q € Proc: Clp) Ap #q= —C(q)
A(i) = B(j)VB(k) ~ Vpe&Proc:A(p) = 39 € Proc:p # qAB(q)

@ Quantifier synthesis for totally ordered domains

» take into account order relation (finite instance N = 3)

58 zgg;AQ“) ~ Vij€0.N:P({i)A0<i<j= Q)

Quantifiers formally express symmetries in properties
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The Bakery Algorithm

variables num = [i € P — 0], flag = [i € P + false]
process self € P:
variables unread = {}, max = 0;
p1: while true:
unread := P\ {self }; max := 0; flag[self] := true;

p2: for nxt € unread:

if num{nxt] > max: max := numnxt|;

unread := unread \ {nxt};

p3:  numiself] :> max;
p4:  flag[self] := false; unread := P\ {self };
pS: for nxt € unread:
await —flag[nxt];
p6: await (num[nxt] = 0) V self < nxt;
unread := unread \ {nxt}
cs: skip;

p7:  numiself] :=0

numli]: ticket number of process i
flagli]: process i draws a ticket

iterate over processes to determine
highest ticket number currently in use

pick some higher ticket number
iterate over processes:

— make sure the process doesn’t draw a ticket
— wait for the process to have lower priority

signal exit by giving up ticket

P21.N i< 2 numl(i] < num(j] VvV (numli] = num[j] Ni <j)
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Formal Specifications of the Bakery Algorithm

e Landmark algorithm for ensuring mutual exclusion

» intuition: organize a queue where customers draw tickets

@ Effect of concurrent reads and writes

@ atomic reads and writes: memory operations never interfere

@ safe registers: a read overlapping a write returns an arbitrary (type-correct) value

e Existing TLA* specifications and hand-written proofs

» we will discuss the non-atomic version, but the results apply to both
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Applying IC3PO to the Bakery

@ Encode existing TLA™ specification in Ivy

» typed, relational input language, e.g., represent i € unread[j| by unread(i, )

@ Run IC3PO model checker for proving mutual exclusion

» initial domain size: 3 processes, 3 ticket numbers
» saturation at 4 processes, 3 ticket numbers

» 42 quantified invariants generated

@ Rewrite IC3PO invariant as a TLA* formula

» group similar clauses for different control points, reorient implications

» use TLAPS to check that the TLA* version of the invariant is inductive
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Two Invariants for the Non-Atomic Bakery

Minv £ Vi € P : Milno(i)

HIno £ TypeOK AVi € P : HlIno(i)

Hllno(i) 2
Al Apcli] € {"p1”,“p2’} = numli] =0
A2 A numli] = 0 = pcli] € {*p1”,“p2",“p3", “p7"}
B1  Apcli € {2, 3} = flagl
B2 A flaglil = peli] € {72, 03, o4}
o [ Apelil € (75,6}
= Vj € (P \ unread[i]) \ {i} : After(j, i)
A A peli] = “p6”
D AV pe[nxt[i]] = “p2" A i & unread|nxt]i]]
V pe[nxt[i]] = “p3
= max[nxt[i]] > numli]
E A pcli] = cs” = Vj € P\ {i} : After(j, i)

After(j,i) 2
A numli] > 0
AV pelj] = p
V pclj] = “p2” A (i € unread|(j] V max[j] > numli])
V pelj] = “p3” A max[j] > numli]
V A pelj] € {“p4”,“p5”, “p6"} Ni K j
A pclj] € {"p5”,“p6’} = i € unread|j]
v pelj] = o7
A. Goel, S. Merz, K. Sakallah

Mino(i) &
a A pcli] € {p4”,“p5",“p6”, “cs”} = numli] # 0
b1 A pcli] € {*p2’,"p3"} = flagli]
A peli] € {"p5",“p6”} Aflagli] = Vj € P\ {i} :
b2 A pelj] € {p5”,“p6"} = i € unreadlj]
A pclj] = “p6” = i # nxt[j]
A pclj] = “es” = i = nxt[j] Vj = nxt|j]
A peli] € {"p5",“p6”} = Vj € P\ unread|i] :
o A pclj] = p2" = i € unread|j] V max[j] > numli]
A pelj] = “p3” = max[j] > numli]
A pclj] € {"p#,“p5",p6"} = i K j
a1 A pcli] = “p6” A pe[nxt[i]] = “p2”
= i € unread|nxt(i]] V max[nxt[i]] > num|i]
1o A pelil = 9o A pelnstll] = *p3" A laglntll]
= max[nxt[i]] > numli]
Apeli] = cs” = Vj € P\ {i}:
A pCU] ="p2=i€ uﬁreadU] \% max[j] > numli
o A pelj] = “p8” = max[j] > numli]

Towards an Automatic Proof of the Bakery Algorithm

Apelj] = p4 =i <

Apelj] € {05, 96"} = i < j Ai € unread]j]
A pelj] # “es”
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Comparing the Two Invariants

@ The two invariants are structurally similar

» based on the same atomic propositions

» superficial syntactic differences due to generation from CNF formulas

@ HInv uses auxiliary predicate After(j, i)

» the implications C and E (resp., ¢ and e) assert similar conditions

» auxiliary predicate abstracts this similarity
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A Closer Look at Parts B / b

B1 A pcli] € {*p2’,p3"} = flagli] b1 A pcli] € {*p2’,p3"} = flagli]

B2 Afaglil = pelil € ot 02, 03, pe7} A flagli] A peli] € {08, 96} = j € P\ {i}
b2 A pclj] € {“p5”,“p6"} = i € unread|j)

A pclj] = “p8” = i # nxt]j]

A pclj] = “cs” = i = nxt[j] V j = nxt[j]

@ Assertions about the flag being set

» B1 and b1 are identical

» B2 implies b2

@ The computer-generated invariant is weaker

» inspecting the code shows that the flag cannot be set beyond p4
» IC3PO propagates predicates using backward reachability analysis
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Summary

@ IC3PO successfully generated an inductive invariant for Bakery

» based on existing specifications, faithfully rewritten in Ivy

» inductive invariants serve as certificates of correctness

@ The synthesized invariant is remarkably similar to a human-written one

» both capture the relevant arguments for proving mutual exclusion

» machine-generated invariant is a little more permissive

@ Perspectives

» directly handle interesting fragment of TLA": avoid manual encoding in Ivy

» handle more case studies and assess scalability
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