
Validating Traces of Distributed Systems
Against TLA+ Specifications

Stephan Merz
joint work with Horatiu Cirstea, Markus Kuppe, Benjamin Loillier

Inria & LORIA, Nancy, France

IFIP Working Group 2.3

Trento, October 2023

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 1 / 12

Motivation

TLA+ has good support for high levels of abstraction

▶ verify properties using model checking or theorem proving

▶ industry-strength approach to formal specification and verification

Leverage specifications for gaining confidence in implementations

▶ formally proving refinement is tedious

▶ lightweight approach: validate individual executions

Objective: framework for validating logs of distributed Java programs

▶ instrument code to record relevant updates to system state

▶ check that all transitions are allowed by the specification

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 2 / 12

Running Example: Two-Phase Commit

TM

RM RM RM. . .

prepared

prepared
prepared

commit / abort

Two transitions described in TLA+

TMRcvPrepared(r) ∆
=

∧ tmState = “init”
∧ [type 7→ “prepared”, rm 7→ r] ∈ msgs
∧ tmPrepared′ = tmPrepared ∪ {r}
∧ UNCHANGED ⟨tmState, rmState, msgs⟩

TMCommit ∆
=

∧ tmState = “init”
∧ tmPrepared = RM
∧ tmState′ = “done”
∧ msgs′ = msgs ∪ {[type 7→ “commit”]}
∧ UNCHANGED rmState

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 3 / 12

Running Example: Two-Phase Commit

TM

RM RM RM. . .

prepared

prepared
prepared

commit / abort

Two transitions described in TLA+

TMRcvPrepared(r) ∆
=

∧ tmState = “init”
∧ [type 7→ “prepared”, rm 7→ r] ∈ msgs
∧ tmPrepared′ = tmPrepared ∪ {r}
∧ UNCHANGED ⟨tmState, rmState, msgs⟩

TMCommit ∆
=

∧ tmState = “init”
∧ tmPrepared = RM
∧ tmState′ = “done”
∧ msgs′ = msgs ∪ {[type 7→ “commit”]}
∧ UNCHANGED rmState

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 3 / 12

Java Implementation of Two-Phase Commit

Classes implementing the algorithm

▶ TransactionManager listens for “prepared” messages, aborts after timeout

▶ ResourceManager may send “prepared” message, listens for “abort” / “commit”

▶ NetworkManager relays messages between processes, based on Java socket library

▶ plus a few helper classes (message objects, handle system shutdown etc.)

Harness running the algorithm

▶ read configuration from JSON file and set up processes

▶ simulate system execution, including delays and failures

Structurally quite different from the TLA+ specification

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 4 / 12

Java Implementation of Two-Phase Commit

Classes implementing the algorithm

▶ TransactionManager listens for “prepared” messages, aborts after timeout

▶ ResourceManager may send “prepared” message, listens for “abort” / “commit”

▶ NetworkManager relays messages between processes, based on Java socket library

▶ plus a few helper classes (message objects, handle system shutdown etc.)

Harness running the algorithm

▶ read configuration from JSON file and set up processes

▶ simulate system execution, including delays and failures

Structurally quite different from the TLA+ specification

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 4 / 12

Instrumenting the Java Implementation for Logging Traces

Two methods from class TransactionManager

protected void receive(Message msg) throws IOException {
if (msg.getContent().equals(TwoPhaseMessage.Prepared)) {

preparedRMs ++; // implementation counts “prepared” messages

}
}

private void commit() throws IOException { // assumes preparedRMs == resourceManagers.size()

for (String rm : resourceManagers) {
networkManager.send(new Message(getName(), rm, TwoPhaseMessage.Commit));

}

}
Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 5 / 12

Instrumenting the Java Implementation for Logging Traces

Two methods from class TransactionManager with instrumentation

protected void receive(Message msg) throws IOException {
if (msg.getContent().equals(TwoPhaseMessage.Prepared)) {

spec.startLog();
preparedRMs ++; // implementation counts “prepared” messages
specTmPrepared.add(msg.getFrom());
spec.endLog(“TMRcvPrepared”, new Vector(msg.getFrom()));

}
}

private void commit() throws IOException { // assumes preparedRMs == resourceManagers.size()
spec.startLog();
for (String rm : resourceManagers) {

networkManager.send(new Message(getName(), rm, TwoPhaseMessage.Commit));
}
specMessages.add(Map.of(“type”, TwoPhaseMessage.Commit.toString()));
spec.endLog(“TMCommit”);

}
Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 5 / 12

Logging Events

An event collects relevant state updates

▶ startLog obtains timestamp of event

▶ record updates to one or more specification variables

▶ do not require values to be provided for all variables

▶ endLog collects updates and formats them as JSON entries

Class TLATracer provides support for logging events

▶ support for shared (physical) and logical clocks

▶ convenience methods for recording (partial) updates of data structures

When trace is complete, sort it according to clock values

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 6 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Validating the Trace

Trace of implementation State space of TLA+ specification

Does the trace correspond to some execution allowed by the TLA+ specification?
Formulate as a model checking problem, using the trace as a constraint

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 7 / 12

Generic Setup of Trace Checking Using TLC

MODULE TraceSpec
EXTENDS TLC, Sequences, Json, IOUtils
JsonTrace ∆

= ndJsonDeserialize(IOEnv.TRACE PATH)
Trace ∆

= Tail(JsonTrace)
VARIABLE l * current line in trace
IsEvent(e) ∆

= ∧ l ∈ 1 .. Len(Trace)
∧ “event” ∈ DOMAIN Trace[l] ⇒ Trace[l].event = e
∧ l′ = l + 1
∧ MapVariables(Trace[l])

TraceAccepted ∆
= Len(Trace) = TLCGet(“stats”).diameter − 1

load trace produced by system run

action IsEvent tracks progress through the trace

post-condition TraceAccepted ensures that at least one matching behavior was found

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 8 / 12

Trace Checking for Two-Phase Commit

MODULE TwoPhaseTrace
EXTENDS TLC, TwoPhase, TVOperators, TraceSpec
MapVariables(t) ∆

=
∧ IF “rmState” ∈ DOMAIN t

THEN rmState′ = MapVariable(rmState, “rmState”, t.rmState)
ELSE TRUE

∧ . . .
IsTMCommit ∆

= IsEvent(“Commit”) ∧ TMCommit
IsTMRcvPrepared ∆

=
∧ IsEvent(“TMRcvPrepared”)
∧ IF “event args” ∈ DOMAIN Trace[l] THEN TMRcvPrepared(Trace[l].event args[1])

ELSE ∃r ∈ RM : TMRcvPrepared(r)
. . .
TraceInit ∆

= TPInit ∧ l = 1
TraceNext ∆

= IsTMCommit ∨ IsTMRcvPrepared ∨ . . .

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 9 / 12

Extending the Implementation for Supporting Failures

Take into account potential message loss

TM

RM RM RM. . .

prepared

pr
ep

ar
ed

prepared
commit / abort

▶ RM resends message after a timeout if no order from TM has arrived

▶ this is allowed by the TLA+ specification: msg variable records all sent messages

However, counting messages is no longer correct

▶ TM cannot distinguish a resent message from an original message send

▶ trace validation quickly reveals the problem: commit may be sent prematurely

▶ modify implementation to store identities of RMs instead of counting

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 10 / 12

Extending the Implementation for Supporting Failures

Take into account potential message loss

TM

RM RM RM. . .

prepared

pr
ep

ar
ed

prepared
commit / abort

▶ RM resends message after a timeout if no order from TM has arrived

▶ this is allowed by the TLA+ specification: msg variable records all sent messages

However, counting messages is no longer correct

▶ TM cannot distinguish a resent message from an original message send

▶ trace validation quickly reveals the problem: commit may be sent prematurely

▶ modify implementation to store identities of RMs instead of counting

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 10 / 12

Experience with Trace Validation

Considered four algorithms

▶ two-phase commit protocol

▶ distributed key-value store, implemented according to existing TLA+ specification

▶ MicroRaft implementation of Raft consensus protocol

▶ consensus protocol used at Microsoft, also based on Raft

Trace validation quickly found discrepancies in every case

▶ instrumenting implementations was straightforward

▶ some care is required for mapping code to atomic TLA+ transitions

▶ tradeoff between precision of logging and state reconstruction using TLC

▶ problems may indicate implementation errors or overly strict specification

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 11 / 12

Experience with Trace Validation

Considered four algorithms

▶ two-phase commit protocol

▶ distributed key-value store, implemented according to existing TLA+ specification

▶ MicroRaft implementation of Raft consensus protocol

▶ consensus protocol used at Microsoft, also based on Raft

Trace validation quickly found discrepancies in every case

▶ instrumenting implementations was straightforward

▶ some care is required for mapping code to atomic TLA+ transitions

▶ tradeoff between precision of logging and state reconstruction using TLC

▶ problems may indicate implementation errors or overly strict specification

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 11 / 12

Conclusions and Perspectives

Lightweight approach to verifying implementations

▶ easy to apply, assuming that the programmer knows the high-level specification

▶ generic, reusable framework mixing Java and TLA+

▶ use of model checker obviates need for tracking all specification variables

▶ surprisingly effective for finding implementation errors

Ongoing work

▶ application to more use cases from industry

▶ streamline the toolchain, aim for (even) more genericity

▶ leverage model checker for steering the implementation?

▶ explore online monitoring instead of off-line trace validation

Stephan Merz Trace Validation for TLA+ WG 2.3, 2023-10 12 / 12

