Interaction, Concurrency, Nondeterminism, Time, Composition, Distribution, Abstraction

An Interface Centric Approach

Practical and Theoretical Consequences

Manfred Broy

Technische Universität München Institut für Informatik D-80290 Munich, Germany

Topics of Concurrency

Theoretical

- Nondeterminism, concurrency
 - Parallel operators (parallel or)
 - Ambiguity
- State machines
- Computability
 - Algorithms
 - Models of computability
 - ♦ Time
 - Infinite computations
 - Onbounded nondeterminism
- Denotational semantics
- Fixpoint theory

Practical

- Nondeterminism and ambiguity
- Abstraction: Interface behavior
- Modularity
 - Encapsulation, information hiding, interface behavior
- Real time
- Graphical models
- Specification
- Distribution and architecture
 Composition
- Verification
- Missing programming languages

Manfred Broy

The Two I	Basic Models
 State based models of concurrency Influenced by von Neumann architecture: shared state Interleaving concurrency implicit nondeterminism deadlock State based assertion techniques ghost variables, stuttering prophecy variables Composition fairness intensional 	 History based models of concurrency Data Flow Infinite computations streams and histories Explicit Concurrency Safety and liveness Composition compositionality extensionality principle Distribution Abstraction: modularity information hiding/encapsulation
Architectures: Interface and Composition, Trento, October 2023	Manfred Broy 3

General Observations

- Numerous models
 - ◊ Petri Nets, Data Flow, TLA , CSP, CCS, B, Unity, Rely/Guarantee, State Charts, Esterel, ...
- Missing studies of the sufficient comparisons of different approaches
- Theoretical consequences not sufficiently investigated
 - $\diamond\,$ How does the notion of algorithm generalize to concurrency and vice versa
 - $\diamond\,$ What about computability when considering nondeterminism, concurrency and/or time
- Practice versus theory
 - $\diamond\,$ In theoretical approaches practical consequences often not sufficiently taken care of
 - ◊ In practical approaches theoretical consequences often not sufficiently taken care of
- Programming languages based on the Neumann architectures
 - Shared state
- A lot of concepts on low level implementation issues
 - ◊ Operating systems, scheduling, bus systems

Practical challenges

 System specification At what abstraction level? Specifying concurrent algorithms or functional behavior of distributed systems System composition Composition of system specifications Compositionality Modularity Compositional verification Cyber physical systems Modeling physical devices Real time Time out Delay Urgency 	 Levels of abstraction Platform independent models of concurrent systems Platform specific models of concurrent systems Distribution Safety and liveness Fairness Design Architecture Interface specification Multiservice systems Feature interaction between services Assumption/commitment Provided and required services
Architectures: Interface and Composition, Trento, October 2023	Manfred Broy 1

Interface Based Modelling Theory

Architectures: Interface and Composition, Trento, October 2023

Manfred Broy

Discrete systems: the modeling theory in a nutshell

Example: Interface Specification - Data flow

$MIX = (x, z: Tstr M \triangleright y: Tstr M): \forall m \in M: m#x+m#z = m#y$		textual
MIX		
in x, z: TSTR M out y: TSTR M	by t	ableau
$\forall m \in M: m#x+m#z = m#y$		
x:M ^{z:M}		
MIX ∀ m ∈ M: m#x+m#z = m#y	g	raphical <mark>_</mark>
y:M↓		
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy		8

	$M^{* \omega} = M^{*} \cup M^{\omega}$			
Finite Streams:	$M^* = \cup_{n \in \mathbb{N}} \{t \in \mathbb{N}$	$: 1 \le t \le n \} \rightarrow M$		
Infinite Streams: $M^{\omega} = \mathbb{N} \to M$				
Data type of	streams over set M:	Str M		

Architectures: Interface and Composition, Trento, October 2023	Manfred Broy	TUTT	9
--	--------------	------	---

Timed Streams: Illustration: Time Flow and Data Flow													
ĩ	3	1	0	2	3	1	0	3	3	1	0	3	
х	abb	С		аа	bcc	а		aaa	bcb	b		ссс	
_	1	2	3	4	5	6	7	8	9	10	11	12	time
Timed stream $x = \langle \langle a \ b \ b \rangle \langle c \rangle \langle \rangle \langle a \ a \rangle \langle b \ c \ c \rangle \langle a \rangle \langle \rangle \langle a \ a \ a \rangle \langle b \ c \ b \rangle \langle b \rangle \langle \rangle \langle c \ c \ c \rangle \dots \rangle$ Time abstraction $\overline{x} = \langle a \ b \ b \ c \ a \ a \ b \ c \ c \ a \ a \ a \ b \ c \ c \ c \ c \ \dots \rangle$ Timing $\tilde{x} = \langle 3 \ 1 \ 0 \ 2 \ 3 \ 1 \ 0 \ 3 \ 3 \ 1 \ 0 \ 3 \dots \rangle$													
Elements at time $@x = \langle 1 \ 1 \ 1 \ 2 \ 4 \ 4 \ 5 \ 5 \ 5 \ 6 \ 8 \ 8 \ 9 \ 9 \ 9 \ 10 \ 12 \ 12 \ 12 \ \dots \rangle$													
$ \begin{split} \tilde{x}(t) &= \#x(t) & \text{timing of } x \text{ by the stream } \tilde{x} \colon \mathbb{N}_+ \to \mathbb{N} \\ n@x & \text{time of nth element in } x \end{split} $													

10

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy 11

Histories of Timed and Untimed Streams

Given a set of typed channel names

$$X = \{c_1:T_1, ..., c_m:T_m\}$$

by \vec{X} we denote channel histories given by families of timed streams, one timed stream for each of the channels:

$$\vec{\mathsf{X}} = (\mathsf{X} \to (\mathsf{M}^*)^{\scriptscriptstyle (\!\!\!\!)})$$

Finite timed histories

$$\vec{X}_{fin} = (X \rightarrow (M^*)^*)$$

Stream histories

$$\overline{X} = (X \to M^{*|\omega})$$
$$\overline{X}_{fin} = (X \to M^{*})$$

Manfred Broy

Given channel sets X and Y, a syntactic interface is denoted by

(X►Y)

Interface specification predicates and assertions

interface (X ► Y)

Architectures: Interface and Composition, Trento, October 2023	Manfred Broy	TUT	15

Refinement of interface predicates

An interface predicate $Q'::(X \triangleright Y)$ is called refinement of an interface predicate $Q::(X \triangleright Y)$ if

 $\mathbf{Q'} \Rightarrow \mathbf{Q}$

Hiding

Hiding

Given a specification

Q = (X ► Y): A

where A is an assertion with free identifiers from X and Y and $\mathsf{Y}' \subseteq \mathsf{Y}$

 $\begin{array}{l} (\text{Hide } Y' \colon Q) \colon :(X \blacktriangleright Y \setminus Y') \\ \text{ for } x \in \overrightarrow{X}, \ \ y'' \in \overline{Y \setminus Y'} \\ (\text{Hide } Y' \colon Q)(x, \, y'') = \exists \ y \in \overrightarrow{Y} \colon Q(x, \, y) \land y'' = y | (Y \setminus Y') \end{array}$

Architectures: Interface and Composition, Trento, October 2023

Manfred Broy

Causality

Strongly Causal Interface Predicates

Q::(X►Y)

is strongly causal if for all $x, z \in \vec{X}, y \in \vec{Y}, \forall t \in \mathbb{N}$

 $x{\downarrow}t = z{\downarrow}t \land Q(x, y) \Rightarrow \exists y' \in \vec{Y}: Q(z, y') \land y{\downarrow}t+1 = y'{\downarrow}t+1$

For every interface predicate $Q::(X \triangleright Y)$ there exists a weakest refinement Q^{\odot} of Q that is strongly causal

Note: If Q(x, y) = false for all $x \in \vec{X}$, $y \in \vec{Y}$ then Q is strongly causal

Specification nuclei

In a specification we may give just a nucleus

MIX = (x, z: Tstr M \triangleright y: Tstr M): \forall m \in M: m#x+m#z = m#y

This is an assertion that gives the key characteristic from which further properties are deduced in refinement steps typically be the step to adding strong causality –

going from MIX to MIX[©].

Example: Interface Specification: Strong Causality

$$\begin{split} \text{MIX} &= (x, z: \text{Tstr } M \triangleright y: \text{Tstr } M): \forall \ m \in M: \ m\#x + m\#z = m\#y \\ & \text{nucleus} \\ \\ \text{MIX}^{\textcircled{o}}(x, y) &= \forall \ m \in M: \ m\#x + m\#z = m\#y \\ & \land \forall \ t \in \mathbb{N}: \ m\#(x \downarrow t) + m\#(z \downarrow t) \geq m\#(y \downarrow t + 1) \end{split}$$

FOW = (y: Tstr M \triangleright x: Tstr M): \forall m \in M: m#x = m#y nucleus

 $FOW^{\textcircled{o}}(x, y) = \forall \ m \in M: \ m\#x = m\#y \land \forall \ t \in \mathbb{N}: \ m\#(y \downarrow t) \ge m\#(x \downarrow t+1)$

Input enabledness

If $Q::(X \triangleright Y) \neq$ false is strongly causal then Q is input enabled

since there exists $z \in \vec{X}$ and $y \in \vec{Y}$ such that Q(x, y)for all $x \in \vec{X}$

$$x \downarrow 0 = z \downarrow 0 \land Q(z, y) \Rightarrow \exists y' \in \vec{Y} : Q(x, y') \land y \downarrow 1 = y' \downarrow 1$$

Realizability

Strongly Causal Functions

$f \colon \vec{X} \to \vec{Y}$

is strongly causal if for $t \, \in \, \mathbb{N}$

 $x{\downarrow}t=z{\downarrow}t \Rightarrow f(x){\downarrow}t{+}1=f(z){\downarrow}t{+}1$

Then we write SC[f]

Every strongly causal f has a unique fixpoint (Proof: Banach's Fixpoint Theorem)

Fully Realizable Predicates

 $Q::(X \triangleright Y)$ $Real[Q] = \{f \in \vec{X} \to \vec{Y}: SC[f] \land \forall x \in \vec{X}: Q(x, f(x))\}$ Real[Q] denotes the set of realizations of Q $Q \text{ is realizable if } \exists f \in Real[Q]$ Q is fully realizable if Q is realizable and $Q(x, y) = \exists f \in Real[Q]: y = f(x)$

Every realization $f \in Real[Q]$ defines a strategy to compute y = f(x) given x such that Q(x, y) holds

Fully Realizable Predicates

For every predicate $Q::(X \triangleright Y)$ there exists a weakest refinement $Q^{\mathbb{R}}$ of Q

 $Q^{\textcircled{B}}(x, y) = \exists f \in \texttt{Real}[Q]: y = f(x)$

Q[®] is fully realizable if Q is realizable

 $Q^{\mathbb{R}}$ = false if Q is not realizable

A specification that is realizable, strongly causal but not fully realizable

DEMO = (x: Tstr M \triangleright y: Tstr M): x \neq y \lor y = ε where ε is the stream with $\#\varepsilon = 0$

DEMO is strongly causal $x\downarrow t = z\downarrow t \land (x \neq y \lor y = \varepsilon) \Rightarrow \exists y' \in \vec{Y}: (z \neq y' \lor y' = \varepsilon) \land y\downarrow t+1 = y'\downarrow t+1$ DEMO is realizable $f(x) = \varepsilon$ but not fully realizable: ε is the only fixpoint of DEMO: DEMO(ε , y) holds for all y with $y \neq \varepsilon$ There is no realization f with $f(\varepsilon) \neq \varepsilon$ since f has a unique fixpoint z where

Assumptions and Commitments

Assumption/Commitment

How to deal with specifications, that are not realizable

Example: An interactive queue

Queue in x: Str Data | {req} out y: Str Data Data©y ⊑ Data©x #y = req#x

Here $M \otimes x$ is the sub-stream of x consisting of the elements in set M x \sqsubseteq y stands for stream x is prefix of stream y However, if we require

$$\#y = req \#x$$

then there exist input streams x such that there does not exist some output y such that Queue(x, y) - Example: $x = \langle req \rangle$

We define the assertion Asu(x) that has to hold for x:

 $Asu(x) = \forall z \in Str Data \mid \{req\}: z \sqsubseteq x \Rightarrow req\#z \le Data\#z$

 $QueueAC(x, y) = (Asu(x) \Rightarrow Queue(x, y))$

Interfaces with assumptions

For the syntactic interface $(X \triangleright Y)$ we may include

- an assumption Asu(y, x) which is a specification of the *inverse* interface (Y ► X) and defines properties of the context
- a commitment Com(x, y) which is a specification of the behavior the syntactic interface (X ► Y) as long as the assumption is fulfilled.

this leads to the specification

 $\mathsf{Asu}(\mathsf{y},\,\mathsf{x}) \Rightarrow \mathsf{Com}(\mathsf{x},\,\mathsf{y})$

Example: System interface specification

Architectures: Interface and Composition, Trento, October 2023	Manfred Broy	TUTT	37

Operational Semantics: Moore machines

For syntactic interface (X \triangleright Y), a generalized nondeterministic (total) Moore machine with state space Σ is a pair (Δ , Λ) where Δ is a *total state transition function*

$$\Delta: (\Sigma \times \overline{\mathsf{X}}_{\mathsf{fin}}) \to \wp (\Sigma \times \overline{\mathsf{Y}}_{\mathsf{fin}}) \setminus \{ \varnothing \}$$

and $\Lambda \subseteq \Sigma$ is a *nonempty set of initial states* and for $a \in \overline{X}_{fin}$, $b \in \overline{Y}_{fin}$, $\sigma, \sigma' \in \Sigma$ $(\sigma', b) \in \Delta(\sigma, a)$

the output **b** does not depend on the input **a** but only on the state σ .

Formally defined, there exists an output function:

$$\Xi: \Sigma \to \wp(\mathsf{Y}_{\mathsf{fin}}) \backslash \{ \varnothing \}$$

such that

$$\forall \ \sigma \in \Sigma, \ a \in \overline{\mathsf{X}}_{\mathsf{fin}}: \ \Xi(\sigma) = \{ \mathsf{b} \in \overline{\mathsf{Y}}_{\mathsf{fin}}: \ \exists \ \sigma' \in \Sigma: \ (\sigma', \ \mathsf{b}) \in \Delta(\sigma, \ a) \}$$

Architectures: Interface and Composition, Trento, October 2023	Manfred Broy	TUT	39
	Thanked Broy		55

Moore machines compute interface behavior

We write $(\Delta, \Lambda)::(X \triangleright Y)$ to express that (Δ, Λ) is the Moore machine that operates over the syntactic interface $(X \triangleright Y)$.

 (Δ, Λ) :: $(X \triangleright Y)$ is called *deterministic* if the for all states $\sigma \in \Sigma$, histories $a \in \overline{X}_{fin}$ the sets Λ and $\Delta(\sigma, a)$ are one-element.

 (Δ, Λ) ::(X > Y) *calculates* for an input history $x \in \vec{X}$ an output history $y \in \vec{Y}$, if there exist states $\sigma_0 \in \Lambda$ and $\sigma_t \in \Sigma$ for all $t \in \mathbb{N}$ and

$$(\sigma_{t+1}, \mathbf{y}(t)) \in \Delta(\sigma_t, \mathbf{x}(t))$$

Then the pair (x, y) of histories is called a *behavioral instance* of $(\Delta, \Lambda)::(X \triangleright Y)$

States are considered as local, as hidden, while input and output is observable.

Manfred Broy

For each history $x \in \vec{X}$ a Moore machine (Δ, Λ) :: $(X \triangleright Y)$ computes an interface predicate

$$\llbracket \Delta, \Lambda \rrbracket \ddot{\mathsf{X}} \times \dot{\mathsf{Y}} \to \mathbb{B}$$

defined by

$$\llbracket [\Delta, \Lambda] \rrbracket (\mathsf{x}, \mathsf{y}) = \exists \ \sigma \in (\mathbb{N} \to \Sigma) : \sigma_0 \in \Lambda \land \forall \ t \in \mathbb{N} : (\sigma_{t+1}, \mathsf{y}(t)) \in \Delta(\sigma_t, \mathsf{x}(t))$$

(Δ', Λ')::(X ► Y) is called (extensional) refinement
 of Moore machine (Δ, Λ)::(X ► Y) if

$\llbracket [\Delta', \Lambda'] \rrbracket \Longrightarrow \llbracket [\Delta, \Lambda] \rrbracket$

Functional Moore machines

For every Moore machine $(\Delta, \Lambda)::(X \triangleright Y)$ its associated interface predicate $[[\Delta, \Lambda]]::(X \triangleright Y)$ is fully realizable and thus also strongly causal.

Every strongly causal function f: $\vec{X} \to \vec{Y}$ defines a deterministic Moore machine $(\Delta_{(X \blacktriangleright Y)}, \{f\})::(X \blacktriangleright Y)$ where $\Sigma_{(X \blacktriangleright Y)}$ is the set of strongly causal functions in $\vec{X} \to \vec{Y}$ and $\Delta_{(X \blacktriangleright Y)}: (\Sigma_{(X \blacktriangleright Y)} \times \overline{X}_{fin}) \to \mathscr{O}(\Sigma_{(X \blacktriangleright Y)} \times \overline{Y}_{fin}) \setminus \{\emptyset\}$ is defined for histories $x \in \overline{X}, y \in \overline{Y}$ and strongly causal functions f, f': $\vec{X} \to \vec{Y}$ by $\Delta(X \blacktriangleright Y)(f, a) = \{(f', b)\}$ where for all $x \in \overline{X}: f(\langle a \rangle^{2}x) = \langle b \rangle^{2}f'(x)$ Define for Moore machine (Δ, Λ) :: $(X \triangleright Y)$ by DET (Δ, Λ) the set of deterministic Moore machines that are refinements of (Δ, Λ) ; then

$$[[\Delta, \Lambda]](\mathbf{x}, \mathbf{y}) = \exists (\Delta', \Lambda') \in \mathsf{DET}(\Delta, \Lambda): [[\Delta', \Lambda']](\mathbf{x}, \mathbf{y})$$

For every Moore machine $(\Delta, \Lambda)::(X \triangleright Y)$ its set of realizations f: $\vec{X} \to \vec{Y}$ of $[[\Delta, \Lambda]]$ is equal to the set of strongly causal functions

$$\{\mathbf{f}': \vec{\mathsf{X}} \to \vec{\mathsf{Y}}: \exists \ (\Delta', \ \Lambda') \in \mathsf{DET}(\Delta, \ \Lambda): \ \forall \ \mathsf{x}: \llbracket \Delta, \ \Lambda \rrbracket(\mathsf{x}, \mathsf{f}(\mathsf{x}))\}$$

For every Moore machine $(\Delta, \Lambda)::(X \triangleright Y)$ its interface predicate $[[\Delta, \Lambda]]::(X \triangleright Y)$ is the disjunction of the associated interface predicates of all its deterministic refinements.

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy 43

Feature Interaction

Given a specification

(X►Y): Q where $X' \subseteq X, Y' \subseteq Y$

a subservice $Q^{\dagger}(X' \triangleright Y')$ is defined by projection

 $(Q^+(X' \blacktriangleright Y'))(x', y') = \exists \ x \in \vec{X}, y \in \vec{Y} \colon Q(x, y) \land x' = x | X' \land y' = y | Y'$

Feature interaction

Manfred Broy

ТШП

46

Q

Let $X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$, where the sets X_1 , X_2 , Y_1 , and Y_2 are pairwise disjoint

The subservices $Q_1 = Q|(X_1 \triangleright Y_1)$ and $Q_2 = Q|(X_2 \triangleright Y_2)$ of service Q are free of feature interactions if

 $Q(x, y) = (Q_1(x|X_1, y|Y_1) \land Q_2(x|X_2, y|Y_2))$

Distribution and Architecture Composition

Composition

We compose systems syntactically and semantically by their interfaces

Syntactic composability

Specifications $S_k = (X_k \triangleright Y_k):Q_k$ where k = 1, 2, are composable if

$$X_1 \cap X_2 = \emptyset$$
$$Y_1 \cap Y_2 = \emptyset$$

To make life simple we usually assume in addition:

$$X_1 \cap Y_1 = \emptyset$$
$$X_2 \cap Y_2 = \emptyset$$

Manfred Broy

Example: Interface Specification: Strong Causality and Composition

MIX = (x, z: Tstr M \triangleright y: Tstr M): \forall m \in M: m#x+m#z = m#y

FOW = (y: Tstr M \triangleright z: Tstr M): \forall m \in M: m#z = m#y

 $(MIX(x, z, y) \land FOW(y, z)) \Rightarrow \forall m \in M: m#x+m#y = m#y$

Example: Interface Specification: Strong Causality and Composition

$$\begin{split} \mathsf{MIX}^{\textcircled{B}}(x, y) &= \forall \ m \in \mathbb{M}: \ m\#x + m\#z = m\#y \\ & \land \forall \ t \in \mathbb{N}: \ m\#(x \downarrow t) + m\#(z \downarrow t) \geq m\#(y \downarrow t + 1) \end{split}$$
 $\begin{aligned} \mathsf{FOW}^{\textcircled{B}}(y, z) &= \forall \ m \in \mathbb{M}: \ m\#z = m\#y \land \forall \ t \in \mathbb{N}: \ m\#(y \downarrow t) \geq m\#(z \downarrow t + 1) \end{aligned}$ $\begin{aligned} (\mathsf{MIX}(x, z, y) \land \mathsf{FOW}(y, z)) \Rightarrow \forall \ m \in \mathbb{M}: \ m\#x + m\#y = m\#y \\ (\mathsf{MIX}^{\textcircled{B}}(x, z, y) \land \mathsf{FOW}^{\textcircled{B}}(y, z)) \Rightarrow \forall \ m \in \mathbb{M}: \ m\#x + m\#y = m\#y \\ & \land \forall \ t \in \mathbb{N}: \ m\#(x \downarrow t) + m\#(y \downarrow t) \geq m\#(y \downarrow t + 1) \end{aligned}$

 \Rightarrow (m#x = 0 \Rightarrow m#y = 0)

Composition and Full Realizability

If two composable specifications $S1 = (X1 \triangleright Y1)$: Q1 and $S2 = (X2 \triangleright Y2)$: Q2

- are fully realizable
- then their composition $S1 \times S2$ with assertion $Q1 \land Q2$ is fully realizable

If assertions W1 and W2 are weaker than fully realizable: $Q1 \Rightarrow W1$, $Q2 \Rightarrow W2$

Then $W1 \wedge W2$ is generally a weaker assertion (correct but not necessary complete)

 $(Q1 \land Q2) \Rightarrow (W1 \land W2)$

Composing Moore machines

We compose Moore machines $(\Delta_k, \Lambda_k)::(X_k \triangleright Y_k)$ for k = 1, 2, where $X_1 \cap X_2 = \emptyset$, $Y_1 \cap Y_2 = \emptyset$ by parallel composition to a Moore machine

 $((\Delta_1, \Lambda_1) \times (\Delta_2, \Lambda_2) :: (X \triangleright Y))$ where X = (X₁ \cup X₂)\Y, Y = Y₁ \cup Y₂ defined by

$$(\Delta, \Lambda) = ((\Delta_1, \Lambda_1) \times (\Delta_2, \Lambda_2))$$

where for

$$\Sigma = (\Sigma_1 \times \Sigma_2)$$

$$\Lambda = \{(\sigma_1, \sigma_2): \sigma_1 \in \Sigma_1 \land \sigma_2 \in \Sigma_2\}$$

 $\Delta((\sigma_1, \, \sigma_2), \, x) = \{((\tau_1, \, \tau_2), \, y): \, (\tau_1, \, y|Y_1) \in \Delta_1(\sigma_1, \, x|X_1) \, \land \, (\tau_2, \, y|Y_2) \in \Delta_2(\sigma_2, \, x|X_2) \, \}$

For composable Moore machines $(\Delta_k, \Lambda_k)::(X_k \triangleright Y_k)$ for k = 1, 2, we get

 $[[(\Delta_1, \Lambda_1) \times (\Delta_2, \Lambda_2)]] = [[(\Delta_1, \Lambda_1)]] \times [[(\Delta_2, \Lambda_2)]]$

For every fully realizable interface predicate $Q::(X \triangleright Y)$ there exists a Moore machine such that

 (Δ, Λ) ::(X > Y) with Q = [[(Δ, Λ)]]

For a Moore machine (Δ, Λ) ::(X > Y) the interface predicate $[[(\Delta, \Lambda)]]$::(X > Y) is

- fully realizable and
- the set of fully realizable interface predicates forms a denotational semantics for systems implemented by Moore machines.

Architectures: Interface and Composition, Trento, October 2023	Manfred Broy	TUT	57

Design Framework

Semantic driven system development

- Encapsulation
 - ♦ Form architectural elements with interfaces that encapsulate the access by interfaces
- Information hiding
 - ♦ Hide implementation details not needed to understand the effect on the context
- Functional abstraction: Model the interface including interface behavior
- Composition
 - Define the interface behavior of composed systems from the interface behavior of the components
- Interface refinement
 - Make specifications more detailed
- Modularity (generalization of Liskov's substitution principle)
 - Guarantee that refinement of specifications of components leads to refinement of specifications of composed systems

Layered Architectures

Layers in Layered Architectures

- Layered architectures have many advantages.
- In many applications, therefore layered architectures are applied.

 $L = (x: \vec{X}, b: \vec{B} \blacktriangleright y: \vec{Y}, a: \vec{A}): R(a, b) \Rightarrow Q(x, y)$

Forming Layered Architectures

We have two layers (k = 1, 2) $L_k = (x_k: \vec{X}_k, b_k: \vec{B}_k \blacktriangleright y_k: \vec{Y}_k, a_k: \vec{A}_k): R_k(a_k, b_k) \Rightarrow Q_k(x_k, y_k)$ that fit syntactically together, if $X_1 = A_2$ and $Y_1 = B_2$, $\begin{array}{c|c} x_{2} : X_{2} \\ \hline \\ Layer L_{2} \\ a_{2} : A_{2} \\ \hline \\ & & & \\ &$ and semantically if the provided service $S_1 = (x_1; \vec{X}_1 \triangleright y_1; \vec{Y}_1); Q_1(x_1, y_1)$ of the lower layer L_1 is a refinement of the requested service $\begin{array}{c|c} x_1 : X_1 \\ \hline \\ Layer L_1 \\ \hline \end{array} \end{array} \begin{array}{c} \hline \\ \gamma_1 : \gamma_1 \\ \hline \\ \gamma_1 : \gamma_1 \\ \hline \end{array}$ $W_2 = (a_2: \vec{A}_2 \triangleright b_2: \vec{B}_2): R_2(a_2, b_2)$ of the upper layer L₂ which means a1: A (note that $X_1 = B_2$ and $Y_1 = A_2$) $Q_1(x_1, y_1) \Rightarrow R_2(x_1, y_1)$ Architectures: Interface and Composition, Trento, October 2023 Manfred Broy ПΠ 61

Proof

We compose the two layers to a system $\ensuremath{\mathsf{L}}$

L
= Hide
$$x_1 \in : \vec{X}_1, y_1: \vec{Y}_1: L_1 \times L_2$$

= $(x_2: \vec{X}_2, b_1: \vec{B}_1 \triangleright y_2: \vec{Y}_2, a_1: \vec{A}_1): \exists x_1 \in : \vec{X}_1, y_1: \vec{Y}_1:$
(R₁(a₁, b₁) ⇒ Q₁(x₁, y₁)) ∧ (R₂(x₁, y₁) ⇒ Q₂(x₂, y₂))
If Q₁(x₁, y₁) ⇒ R₂(x₁, y₁) holds we conclude
L = $(x_2: \vec{X}_2, b_1: \vec{B}_1 \triangleright y_2: \vec{Y}_2, a_1: \vec{A}_1): (R_1(a_1, b_1) \Rightarrow Q_2(x_2, y_2))$

System L which is the result of composing the two layers is a layer again with the provided service of layer L_2 and the requested service of layer L_1 .

Forming Layered Architectures

The Two Basic Models				
 State based models of concurrency Influenced by von Neumann architecture: shared state Interleaving concurrency implicit nondeterminism deadlock State based assertion techniques ghost variables, stuttering prophecy variables Composition fairness intensional 	 History based models of concurrency Data Flow Infinite computations streams and histories streams and histories Explicit Concurrency Safety and liveness Composition compositionality extensionality principle Distribution Abstraction: modularity information hiding/encapsulation 			
Architectures: Interface and Composition, Trento, October 2023	Manfred Broy 100 65			

Concluding Remarks

- Expressive power and flexibility
 - In principle all kinds of behavior can be specified
 - Specifications can be noncausal, weakly or strongly causal, realizable or fully realizable
- Specification, composition, verification and refinement by a calculus that is
 - ♦ Sound
 - Relatively complete
 - Making specification f.r. (often s.c. is enough) is sufficient for all proofs

- Methodological extensions
 - ♦ Assumption/Commitment specifications
 - Time free specifications
- Architecture design by specifications
- Further Extensions
 - Infinite networks (recursive definitions of networks)
 - Optimic systems
 - ◊ Probability

Topics for future research

- A tool for proving in the calculus
- A programming language for implementation
- Probabilities for interface behavior
- A time free version for non-time-sensitive interface specifications
 Ambiguous operators

Architectures: Interface and Composition, Trento, October 2023	Manfred Broy	TUTT	67
	· · · · ·		