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Topics of Concurrency

Theoretical
• Nondeterminism, concurrency
◊ Parallel operators (parallel or)
◊ Ambiguity

• State machines
• Computability
◊ Algorithms
◊ Models of computability
◊ Time
◊ Infinite computations
◊ Unbounded nondeterminism

• Denotational semantics 
• Fixpoint theory

Practical
• Nondeterminism and ambiguity
• Abstraction: Interface behavior
• Modularity
◊ Encapsulation, information hiding, 

interface behavior

• Real time
• Graphical models
• Specification
• Distribution and architecture
◊ Composition

• Verification
• Missing programming languages
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The Two Basic Models

State based models of concurrency
• Influenced by von Neumann 

architecture: shared state
• Interleaving concurrency
◊ implicit
◊ nondeterminism
◊ deadlock

• State based assertion techniques
◊ ghost variables, 
◊ stuttering
◊ prophecy variables

• Composition
◊ fairness
◊ intensional

History based models of concurrency
• Data Flow
• Infinite computations
◊ streams and histories

• Explicit Concurrency
• Safety and liveness
• Composition
◊ compositionality 
◊ extensionality principle

• Distribution
• Abstraction: modularity
◊ information hiding/encapsulation

• Components
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General Observations

• Numerous models
◊ Petri Nets, Data Flow, TLA , CSP, CCS, B, Unity, Rely/Guarantee, State Charts, Esterel, …

• Missing studies of the sufficient comparisons of different approaches
• Theoretical consequences not sufficiently investigated
◊ How does the notion of algorithm generalize to concurrency and vice versa
◊ What about computability when considering nondeterminism, concurrency and/or time

• Practice versus theory
◊ In theoretical approaches practical consequences often not sufficiently taken care of
◊ In practical approaches theoretical consequences often not sufficiently taken care of

• Programming languages based on the Neumann architectures
◊ Shared state

• A lot of concepts on low level implementation issues 
◊ Operating systems, scheduling, bus systems
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Practical challenges

• System specification
◊ At what abstraction level?
◊ Specifying concurrent algorithms or 

functional behavior of distributed systems

• System composition
◊ Composition of system specifications
◊ Compositionality
◊ Modularity
◊ Compositional verification

• Cyber physical systems
◊ Modeling physical devices

• Real time
◊ Time out
◊ Delay
◊ Urgency

• Levels of abstraction
◊ Platform independent models of 

concurrent systems
◊ Platform specific models of concurrent 

systems

• Distribution
• Safety and liveness 
◊ Fairness

• Design
◊ Architecture

• Interface specification
◊ Multiservice systems
◊ Feature interaction between services
◊ Assumption/commitment
◊ Provided and required services
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Interface Based Modelling Theory

• Interface Model
◊ Syntactic
◊ Behavioral

• Architecture Model
◊ Composition
◊ Feedback

• Expressive power
◊ Data flow
◊ Time flow

• System specification
• System composition
• System Verification
• Operational models
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Discrete systems: the modeling theory in a nutshell

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Forms of models
• mathematical
• logical
• graphical

Sets  of typed channels 

 X = {x1 : T1, x2 : T2, ... } 
 Y = {y1 : S1, y2 : S2, ... } 

syntactic interface 

(X u Y) 
data stream of type T 

STREAM T = {	ℕ\{0} ® T*}  

valuation of channel set X 

X##⃗  = {X ® STREAM[T]} 

interface behavior for syn. interface (XuY) 

interface predicates 

Q: X##⃗  ´ Y##⃗  ® % 

represented by interface assertions:  
logical formula with channel names  
as variables for streams 
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Example: Interface Specification - Data flow

MIX = (x, z: Tstr M� y: Tstr M): ∀ m Î M: m#x+m#z = m#y

MIX    
∀ m Î M: m#x+m#z = m#y

x:M z:M

y:M

 
MIX _____________________________________ 
in x, z: TSTR M 
out y: TSTR M 
" m Î M: m#x+m#z = m#y 
 

textual

by tableau

graphical
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Streams

M*|w = M* È Mw

Finite Streams:        M* = ÈnÎℕ {t Î ℕ: 1 ≤ t ≤ n} → M 

Infinite Streams:                     Mw = ℕ → M

Data type of streams over set M:         Str M 
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Timed Streams: Illustration: Time Flow and Data Flow

Timed stream x = ááa b bñ ácñ áñ áa añ áb c cñ áañ áñ áa a añ áb c bñ ábñ áñ ác c cñ … ñ
Time abstraction x̅ = áa b b c a a b c c a a a a b c b b c c c …ñ
Timing #x	= á3 1 0 2 3 1 0 3 3 1 0 3 …ñ
Elements at time @x = á1 1 1 2 4 4 5 5 5 6 8 8 8 9 9 9 10 12 12 12  … ñ

 #x(t) = #x(t) timing of x by the stream #x: ℕ+ → ℕ
n@x  time of nth element in x

time

x    a b b       c                   a a     b c c       a                 a a a    b c b       b                 c c c 

1 2          3          4         5          6         7         8          9        10        11       12      

x" 3          1          0         2         3         1          0         3          3         1         0          3
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Timed Streams

Timed streams (M*)w = ℕ+ → M*

Finite timed streams (M*)* = Èn Î ℕ  ({m Î ℕ+: m ≤ n} → M*)

x↓t : {n Î ℕ: 1 ≤ n ≤ t} → M*
1 ≤ n ≤ t Þ (x↓t)(n) = x(n)

#x number of elements in x
M#x number of elements in x that are in set M

m#x = {m}#x
Type of all timed streams: Tstr M 
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Histories of Timed and Untimed Streams

Given a set of typed channel names
X = {c1:T1, …, cm:Tm}

by X we denote channel histories given by families of timed streams, 
one timed stream for each of the channels:

X = (X → (M*)w)
Finite timed histories

Xfin = (X → (M*)*)
Stream histories

X	 = (X → M*|w)
Xfin = (X → M*)
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Syntactic interfaces

Given channel sets X and Y, a syntactic interface is denoted by

(X�Y)

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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Interface specification predicates and assertions

Q: X ´ Y → %
Q = (X�Y): A

where A is an assertion with free identifiers from X and Y

MIX = (x, z: Tstr M� y: Tstr M): ∀ m Î M: m#x+m#z = m#y
MIX(x, z, y) = ∀ m Î M: m#x+m#z = m#y

(let M be a nonempty set/type)

We write Q::(X�Y) to express that Q is an interface predicate for the syntactic 
interface (X�Y) 

Ax1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

predicate assertion
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Delay and time out

FOW = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

Delay:  d Î ℕ: d ≥ 1
FOWD = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y 

Ù ∀ t Î ℕ: m#(y↓t) ≥ m#(z↓t+d)
Time out: u Î ℕ: u ≥ 1
FOWTO = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

Ù ∀ t Î ℕ: m#(z↓t+u) ≥ m#(y↓t))
Delay and time out:
FOWD = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y 

Ù ∀ t Î ℕ: m#(z↓t+u) ≥ m#(y↓t) ≥ m#(z↓t+d)
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Refinement of interface predicates

An interface predicate Q’::(X�Y) 
is called refinement of an interface predicate Q::(X�Y) if

Q’ Þ Q



Hiding
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Hiding

Given a specification

Q = (X�Y): A

where A is an assertion with free identifiers from X and Y and Y’ Í Y

(Hide Y’: Q)::(X�Y\Y’)
for x Î X, y’’ Î Y\Y’

(Hide Y’: Q)(x, y’’) = $ y Î Y: Q(x, y) Ù y’’ = y|(Y\Y’)



Causality
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Strongly Causal Interface Predicates

Q::(X�Y) 

is strongly causal if for all x, z Î X, y Î Y, ∀ t Î ℕ

x↓t = z↓t Ù Q(x, y) Þ $ y'Î Y: Q(z, y') Ù y↓t+1 = y'↓t+1

For every interface predicate Q::(X�Y) 
there exists a weakest refinement Q© of Q that is strongly causal

Note: If Q(x, y) = false for all x Î X, y Î Y then Q is strongly causal
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Example: Interface Specification: Strong Causality

TRA = (x: Tstr M � y: Tstr M): 
∀ m Î M: (m#x = 0 Þ m#y = 0) Ù (m#x = ¥ Þ  m#y > 0)

TRA(x, y)
Þ

m#x = ¥ Þ $ t Î ℕ: m#y↓t > 0
TRA©(x, y)
Þ
  ∀ t Î ℕ: m#(x↓t) = 0 Þ m#(y↓t+1) = 0

Þ
m#x = ¥ Þ $ t Î ℕ: m#(x↓t) > 0 Ù m#(y↓t) = 0 Ù m#(y↓t+1) > 0

nucleus

strong causality

logical reasoning

logical reasoning

Manfred Broy 22Architectures: Interface and Composition, Trento, October 2023

Specification nuclei

In a specification we may give just a nucleus

MIX = (x, z: Tstr M� y: Tstr M): ∀ m Î M: m#x+m#z = m#y

This is an assertion that gives the key characteristic from which further 
properties are deduced in refinement steps typically be the step to adding strong 
causality – 

going from MIX to MIX©. 
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Example: Interface Specification: Strong Causality

MIX = (x, z: Tstr M�y: Tstr M): ∀ m Î M: m#x+m#z = m#y

MIX©(x, y) = ∀ m Î M: m#x+m#z = m#y 
Ù ∀ t Î ℕ: m#(x↓t)+m#(z↓t) ≥ m#(y↓t+1)

FOW = (y: Tstr M�x: Tstr M): ∀ m Î M: m#x = m#y

FOW©(x, y) = ∀ m Î M: m#x = m#y Ù ∀ t Î ℕ: m#(y↓t) ≥ m#(x↓t+1)

nucleus

nucleus
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Input enabledness

If Q::(X�Y) ≠ false is strongly causal then Q is input enabled 

since there exists z Î X and y Î Y such that Q(x, y) 
for all x Î X

x↓0 = z↓0 Ù Q(z, y) Þ $ y'Î Y: Q(x, y') Ù y↓1 = y'↓1



Realizability
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Strongly Causal Functions

f: X → Y 

is strongly causal if for t Î ℕ

x↓t = z↓t Þ f(x)↓t+1 = f(z)↓t+1 

Then we write SC[f]

Every strongly causal f has a unique fixpoint (Proof: Banach’s Fixpoint Theorem)
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Fully Realizable Predicates

Q::(X�Y) 
Real[Q] = {f Î X → Y: SC[f] Ù ∀ x Î X: Q(x, f(x))}

Real[Q] denotes the set of realizations of Q
Q is realizable if $ f Î Real[Q]

Q is fully realizable if Q is realizable and
Q(x, y) = $ f Î Real[Q]: y = f(x)

Every realization f Î Real[Q] defines a strategy to compute y = f(x) given x
such that Q(x, y) holds
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Fully Realizable Predicates

For every predicate Q::(X�Y) there exists a weakest refinement Q® of Q
 

Q®(x, y) = $ f Î Real[Q]: y = f(x)

Q® is fully realizable if Q is realizable

Q® = false if Q is not realizable
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Example: Interface Specification: Strong Realizability

INF = (x: Tstr M � y: Tstr M):  #x = ¥ Þ #y = 0

INF is not strongly causal, realizable, but not fully realizable

INF®(x, y) 
Þ

#y = 0

nucleus

full realizability
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Example: Interface Specification: Strong Realizability

REP = (x: Tstr M � y: Tstr M): 
(#x < ¥ Þ #y = 0) Ù (#x = ¥ Þ #y = ¥) 

REP is strongly causal

REP®(x, y) 
Þ

false

nucleus

realizability
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Example: Interface Specification: full realizability

NoID = ({x: Tstr M} � {y: Tstr M}): x ≠ y

NoID is strongly causal

NoID®(x, y) 
Þ

false

nucleus

strong causality

full realizability
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A specification that is realizable, strongly causal but not fully realizable

DEMO = (x: Tstr M�y: Tstr M): x ≠ y Ú y = e where e is the stream with #e = 0

DEMO is strongly causal
x↓t = z↓t Ù (x ≠ y Ú y = e) Þ $ y'Î Y: (z ≠ y' Ú y' = e) Ù y↓t+1 = y'↓t+1

DEMO is realizable
f(x) = e

but not fully realizable: e is the only fixpoint of DEMO:
DEMO(e, y) holds for all y with y ≠ e
There is no realization f with f(e) ≠ e since f has a unique fixpoint z where 
DEMO(z, f(z)) and z = f(z). Since DEMO(z, z) implies z = e we get f(e) = e



Assumptions and Commitments
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Assumption/Commitment

How to deal with specifications, that are not realizable

Example:

Here M©x is the sub-stream of x consisting of the elements in set M
x ⊑ y stands for stream x is prefix of stream y

 
An interactive queue  
 

Queue 
  in    x: Str Data | {req} 
  out  y: Str Data 
 Data©y ⊑	Data©x 
 #y = req#x 
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Inconsistence with strong causality: not input enabled

However, if we require
Data©y ⊑ Data©x

#y = req#x
then there exist input streams x such that there does not exist some output y 
such that Queue(x, y) - Example: x = áreqñ

We define the assertion Asu(x) that has to hold for x:

  Asu(x) = " z Î Str Data | {req}: z ⊑ x Þ req#z ≤ Data#z

QueueAC(x, y) = (Asu(x) Þ Queue(x, y))
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Interfaces with assumptions

For the syntactic interface (X�Y) we may include

• an assumption Asu(y, x) which is a specification of the inverse interface (Y�X) 
and defines properties of the context

• a commitment Com(x, y) which is a specification of the behavior the syntactic 
interface (X�Y) as long as the assumption is fulfilled.

this leads to the specification
Asu(y, x) Þ Com(x, y) 
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Example: System interface specification

 
A transmission component TMCWA 
 

TMCWA 
  in    x: Tstr M 
  out  y: Tstr M 
 assume  " t Î ℕ: #x¯t ≤ 1+#y¯t 
 commit  " m Î M: m#x = m#y 

 
 

TMCWAx:T y:T

Operational Semantics:
Moore machines
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Moore machines

For syntactic interface (X � Y), a generalized nondeterministic (total) Moore 
machine with state space S is a pair (D, L) where D is a total state transition 
function 

D: (S ´ Xfin) ® Ã(S ´ Yfin)\{Æ}

and L Í S is a nonempty set of initial states and for a Î Xfin, b Î Yfin, s, s’Î S
(s’, b) Î D(s, a) 

the output b does not depend on the input a but only on the state s. 
Formally defined, there exists an output function:

X: S ® Ã(Yfin)\{Æ}
such that 

" s Î S, a Î Xfin: X(s) = {b Î Yfin: $ s’ Î S: (s’, b) Î D(s, a)}
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Moore machines compute interface behavior

We write (D, L)::(X�Y) to express that (D, L) is the Moore machine that operates 
over the syntactic interface (X�Y).

(D, L)::(X�Y) is called deterministic if the for all states s Î S, histories a Î Xfin 
the sets L and D(s, a) are one-element. 

(D, L)::(X�Y) calculates for an input history x Î X	an output history y Î Y, if there 
exist states s0 Î L and st Î S for all t Î ℕ and

 (st+1, y(t)) Î D(st, x(t))

Then the pair (x, y) of histories is called a behavioral instance of (D, L)::(X�Y) 

States are considered as local, as hidden, while input and output is observable.
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Moore machines compute infertace behavior

For each history x Î X	 a Moore machine (D, L)::(X�Y) computes an interface  
predicate 

[[D, L]]: X	´ Y	® %
defined by

 [[D, L]](x, y) = $ s Î (ℕ ® S): s0 Î	L Ù " t Î ℕ: (st+1, y(t)) Î D(st, x(t))

(D’, L’)::(X�Y) is called (extensional) refinement 
of Moore machine (D, L)::(X�Y) if 

[[D’, L’]] Þ [[D, L]]
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Functional Moore machines

For every Moore machine (D, L)::(X�Y) its associated interface predicate 
 [[D, L]]::(X�Y) 
is fully realizable and thus also strongly causal.

Every strongly causal function f: X ® Y	 defines a deterministic Moore machine 
  (D(X�Y), {f})::(X�Y) 
where S(X�Y) is the set of strongly causal functions in X ® Y	 and 
  D(X�Y): (S(X�Y) ´ Xfin) ® Ã(S(X�Y) ´ Yfin)\{Æ} 
is defined for histories x Î X, y Î Y and strongly causal functions f, f’: X ® Y	 by

D(X�Y)(f, a) = {(f’, b)}  where for all x Î X: f(áañˆx) = ábñˆf’(x)
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Deterministic Moore machines

Define for Moore machine (D, L)::(X�Y) by DET(D, L) the set of deterministic 
Moore machines that are refinements of (D, L); then

  [[D, L]](x, y) = $ (D', L') Î DET(D, L): [[D', L']] (x, y)

For every Moore machine (D, L)::(X�Y) its set of realizations f: X ® Y	of [[D, L]] 
is equal to the set of strongly causal functions
  

{f': X ® Y	: $ (D', L') Î DET(D, L): " x: [[D, L]](x, f(x))}

For every Moore machine (D, L)::(X�Y) its interface predicate [[D, L]]::(X�Y) is 
the disjunction of the associated interface predicates of all its deterministic 
refinements.

Feature Interaction
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Projection

Given a specification 

(X�Y): Q 
where X’ Í X, Y’ Í Y

a subservice Q†(X’�Y’) is defined 
by projection

 (Q†(X’�Y’))(x’, y’) = $ x Î X, y Î Y: Q(x, y) Ù x’ = x|X’ Ù y’ = y|Y’ 
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Feature interaction

Can we decompose a system 

Q1

X1

Y1

Q2

X2

Y2
…

…

…

…

Q

X

Y

. . .

. . .

into
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Feature Interaction

Let X = X1ÈX2, Y = Y1ÈY2, where the sets X1, X2, Y1, and Y2 are pairwise disjoint

The subservices Q1 = Q|(X1�Y1) and Q2 = Q|(X2�Y2) of service Q are free of 
feature interactions if

Q(x, y) = (Q1(x|X1, y|Y1) Ù Q2(x|X2, y|Y2))

Q

Q1

X1

Y1

Q2

X2

Y2
…

…

…

…

Distribution and Architecture
Composition
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Composition 

We compose systems syntactically and semantically by their interfaces
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Syntactic composability

Specifications Sk = (Xk�Yk):Qk where k = 1, 2, are composable if

X1ÇX2 = Æ
Y1ÇY2 = Æ

To make life simple we usually assume in addition:

X1ÇY1 = Æ
X2ÇY2 = Æ
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Composition Diagrams

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2
S2

z2

z1

y2

x2

S1´S2

S1ÄS2 

   
S2 
  in    x2, z2: M 
  out  y2, z1: M 
  Q2 

 

   
S1 
  in    x1, z1: M 
  out  y1, z2: M 
  Q1 

   S1rS2 
  in    x1, x2: M 
  out y1, z2, y2, z1: M 
  Q1 Ù Q2 
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Example: Interface Specification: Strong Causality and Composition

MIX = (x, z: Tstr M�y: Tstr M): ∀ m Î M: m#x+m#z = m#y

FOW = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

(MIX(x, z, y) Ù FOW(y, z)) Þ ∀ m Î M: m#x+m#y = m#y
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Composition Diagrams

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2
S2

z2

z1

y2

x2

S1´S2

S1ÄS2 

   
S2 
  in    x2, z2: M 
  out  y2, z1: M 
  Q2 

 

   
S1 
  in    x1, z1: M 
  out  y1, z2: M 
  Q1 

   S1rS2 
  in    x1, x2: M 
  out y1, z2, y2, z1: M 
  Q1® Ù Q2® 

 

Manfred Broy 54Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: Strong Causality and Composition

MIX®(x, y) = ∀ m Î M: m#x+m#z = m#y 
Ù ∀ t Î ℕ: m#(x↓t)+m#(z↓t) ≥ m#(y↓t+1)

FOW®(y, z) = ∀ m Î M: m#z = m#y Ù ∀ t Î ℕ: m#(y↓t) ≥ m#(z↓t+1)

(MIX(x, z, y) Ù FOW(y, z)) Þ ∀ m Î M: m#x+m#y = m#y

(MIX®(x, z, y) Ù FOW® (y, z)) Þ ∀ m Î M: m#x+m#y = m#y
Ù∀ t Î ℕ: m#(x↓t)+m#(y↓t) ≥ m#(y↓t+1)

Þ (m#x = 0 Þ m#y = 0)
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Composition and Full Realizability

If two composable specifications S1 = (X1�Y1): Q1 and S2 = (X2�Y2): Q2 

• are fully realizable

• then their composition S1rS2  with assertion Q1ÙQ2 is fully realizable

If assertions W1 and W2 are weaker than fully realizable: Q1 Þ W1, Q2 Þ W2

Then W1 Ù W2 is generally a weaker assertion (correct but not necessary complete)

  (Q1 Ù Q2) Þ (W1 Ù W2)
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Composing Moore machines

We compose Moore machines (Dk, Lk)::(Xk�Yk) for k = 1, 2, where X1ÇX2 = Æ, 
Y1ÇY2 = Æ by parallel composition to a Moore machine 

((D1, L1)r(D2, L2)::(X � Y)) 
where X = (X1ÈX2)\Y, Y = Y1ÈY2 defined by

(D, L) = ((D1, L1) r (D2, L2))
where for 

 S = (S1 ´ S2)

 L = {(s1, s2): s1 Î S1 Ù s2 Î S2}

 D((s1, s2), x) = {((t1, t2), y): (t1, y|Y1) Î D1(s1, x|X1) Ù (t2, y|Y2) Î D2(s2, x|X2) }
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Composing Moore machines

For composable Moore machines (Dk, Lk)::(Xk�Yk) for k = 1, 2, we get

  [[(D1, L1)r(D2, L2)]] = [[(D1, L1)]]r[[(D2, L2)]] 

For every fully realizable interface predicate Q::(X�Y) there exists a Moore 
machine such that 
  (D, L)::(X�Y) with Q = [[(D, L)]]

For a Moore machine (D, L)::(X�Y) the interface predicate [[(D, L)]] ::(X�Y) is 
• fully realizable and 
• the set of fully realizable interface predicates forms a denotational semantics 

for systems implemented by Moore machines.
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Design Framework

Semantic driven system development
• Encapsulation
◊ Form architectural elements with interfaces that encapsulate the access by interfaces

• Information hiding
◊ Hide implementation details not needed to understand the effect on the context

• Functional abstraction: Model the interface including interface behavior
• Composition
◊ Define the interface behavior of composed systems from the interface behavior of the 

components

• Interface refinement
◊ Make specifications more detailed

• Modularity (generalization of Liskov‘s substitution principle)
◊ Guarantee that refinement of specifications of components leads to refinement of 

specifications of composed systems



Layered Architectures
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Layers in Layered Architectures

• Layered architectures have many advantages. 
• In many applications, therefore layered architectures are applied.

L = (x: X, b: B�y: Y, a: A): R(a, b) Þ Q(x, y) 

Let the interface behavior 
 S = (x: X�y: Y): Q(x, y) 
denote the provided service and 
 W = (a: A�b: B): R(a, b) 
denote the required service. 

System S

x1: X1 xn: Tstr Tn

ym: Tstr Smy1: Tstr S1 …

Layer L

x: X y: Y 

a: A b: B
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Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L

Forming Layered Architectures

We have two layers (k = 1, 2)
 Lk = (xk: Xk, bk: Bk�yk: Yk, ak: Ak): Rk(ak, bk) Þ Qk(xk, yk )
that fit syntactically together, if
 X1 = A2 and Y1 = B2, 
and semantically if the provided service
 S1 = (x1: X1�y1: Y1): Q1(x1, y1) 
of the lower layer L1 is a refinement  of  
the requested service
 W2= (a2: A2�b2: B2): R2(a2, b2)
of the upper layer L2 which means 
(note that X1 = B2 and Y1 = A2)
 Q1(x1, y1) Þ R2(x1, y1)

=

Physical Device

a: A b: B 

Physical Device

a: A 

Control Layer

x: X y: Y 

b: B 

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L

Ä
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Proof

We compose the two layers to a system L
 L 
 = Hide x1 Î : X1, y1: Y1: L1 r L2 

 = (x2: X2, b1: B1�y2: Y2, a1: A1): $ x1 Î : X1, y1: Y1:
 (R1(a1, b1) Þ Q1(x1, y1)) Ù (R2(x1, y1) Þ Q2(x2, y2)) 

If Q1(x1, y1) Þ R2(x1, y1) holds we conclude
  L = (x2: X2, b1: B1�y2: Y2, a1: A1): (R1(a1, b1) Þ Q2(x2, y2)) 

System L which is the result of composing the two layers is a layer again with 
the provided service of layer L2 and the requested service of layer L1.
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LA

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer Ln

xn: Xn yn: Yn

an: An bn: Bn

. . .

Forming Layered Architectures

If the layers fit together, we get a layered architecture
Lk=(xk:Xk, bk:Bk�yk:Yk, ak:Ak): Rk(ak, bk) Þ Qk(xk, yk )
that fit syntactically together, if
 Xk = Ak+1 and Yk = Bk+1, 
and semantically if the provided service
Sk = (xk: Xk�yk: Yk): Qk(xk, yk) 
of lower layer Lk is a refinement  of  
the requested service
Wk+1= (ak+1: Ak+1�bk+1: Bk+1): R2(ak+1, bk+1)
of the upper layer L2 which means 
 Qk(xk, yk) Þ Rk+1(xk, yk)
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architecture  
design

architecture  
verification
S Ü C1ÄC2ÄC3

C1 C2 C3C2
System Specification

Sx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Validation

Informal 
requirements

System delivery

System verification
R Þ S

Rx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Integration

R = R1ÄR2ÄR3

components implementation

Verification R1 Þ C1 R2 Þ C2 R3 Þ C3

Int
eg

rat
ionimplementation

design

Specification

de
liv

er
y

S

C1 C2 C3
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The Two Basic Models

State based models of concurrency
• Influenced by von Neumann 

architecture: shared state
• Interleaving concurrency
◊ implicit
◊ nondeterminism
◊ deadlock

• State based assertion techniques
◊ ghost variables, 
◊ stuttering
◊ prophecy variables

• Composition
◊ fairness
◊ intensional

History based models of concurrency
• Data Flow
• Infinite computations
◊ streams and histories

• Explicit Concurrency
• Safety and liveness
• Composition
◊ compositionality 
◊ extensionality principle

• Distribution
• Abstraction: modularity
◊ information hiding/encapsulation

• Components
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Concluding Remarks

• Expressive power and flexibility
◊ In principle all kinds of behavior can be 

specified
◊ Specifications can be noncausal, weakly 

or strongly causal, realizable or fully 
realizable

• Specification, composition, 
verification and refinement by a 
calculus that is
◊ Sound
◊ Relatively complete
◊ Making specification f.r. (often s.c. is 

enough) is sufficient for all proofs

• Methodological extensions
◊ Assumption/Commitment specifications
◊ Time free specifications

• Architecture design by specifications
• Further Extensions
◊ Infinite networks (recursive definitions of 

networks)
◊ Dynamic systems
◊ Probability
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Topics for future research

• A tool for proving in the calculus

• A programming language for implementation

• Probabilities for interface behavior

• A time free version for non-time-sensitive interface specifications
◊ Ambiguous operators


