
Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Interaction, Concurrency, Nondeterminism, Time,
Composition, Distribution, Abstraction

An Interface Centric Approach

Practical and Theoretical Consequences

Manfred Broy

Manfred Broy 2Architectures: Interface and Composition, Trento, October 2023

Topics of Concurrency

Theoretical
• Nondeterminism, concurrency
◊ Parallel operators (parallel or)
◊ Ambiguity

• State machines
• Computability
◊ Algorithms
◊ Models of computability
◊ Time
◊ Infinite computations
◊ Unbounded nondeterminism

• Denotational semantics
• Fixpoint theory

Practical
• Nondeterminism and ambiguity
• Abstraction: Interface behavior
• Modularity
◊ Encapsulation, information hiding,

interface behavior

• Real time
• Graphical models
• Specification
• Distribution and architecture
◊ Composition

• Verification
• Missing programming languages

Manfred Broy 3Architectures: Interface and Composition, Trento, October 2023

The Two Basic Models

State based models of concurrency
• Influenced by von Neumann

architecture: shared state
• Interleaving concurrency
◊ implicit
◊ nondeterminism
◊ deadlock

• State based assertion techniques
◊ ghost variables,
◊ stuttering
◊ prophecy variables

• Composition
◊ fairness
◊ intensional

History based models of concurrency
• Data Flow
• Infinite computations
◊ streams and histories

• Explicit Concurrency
• Safety and liveness
• Composition
◊ compositionality
◊ extensionality principle

• Distribution
• Abstraction: modularity
◊ information hiding/encapsulation

• Components

Manfred Broy 4Architectures: Interface and Composition, Trento, October 2023

General Observations

• Numerous models
◊ Petri Nets, Data Flow, TLA , CSP, CCS, B, Unity, Rely/Guarantee, State Charts, Esterel, …

• Missing studies of the sufficient comparisons of different approaches
• Theoretical consequences not sufficiently investigated
◊ How does the notion of algorithm generalize to concurrency and vice versa
◊ What about computability when considering nondeterminism, concurrency and/or time

• Practice versus theory
◊ In theoretical approaches practical consequences often not sufficiently taken care of
◊ In practical approaches theoretical consequences often not sufficiently taken care of

• Programming languages based on the Neumann architectures
◊ Shared state

• A lot of concepts on low level implementation issues
◊ Operating systems, scheduling, bus systems

Manfred Broy 5Architectures: Interface and Composition, Trento, October 2023

Practical challenges

• System specification
◊ At what abstraction level?
◊ Specifying concurrent algorithms or

functional behavior of distributed systems

• System composition
◊ Composition of system specifications
◊ Compositionality
◊ Modularity
◊ Compositional verification

• Cyber physical systems
◊ Modeling physical devices

• Real time
◊ Time out
◊ Delay
◊ Urgency

• Levels of abstraction
◊ Platform independent models of

concurrent systems
◊ Platform specific models of concurrent

systems

• Distribution
• Safety and liveness
◊ Fairness

• Design
◊ Architecture

• Interface specification
◊ Multiservice systems
◊ Feature interaction between services
◊ Assumption/commitment
◊ Provided and required services

Manfred Broy 6Architectures: Interface and Composition, Trento, October 2023

Interface Based Modelling Theory

• Interface Model
◊ Syntactic
◊ Behavioral

• Architecture Model
◊ Composition
◊ Feedback

• Expressive power
◊ Data flow
◊ Time flow

• System specification
• System composition
• System Verification
• Operational models

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

F3

x1 : U1

z3: W3

x4 : U4

x3 : U3x2 : U2

z4 : W4

y1 : V1

y2 : V2

z2 : W2

z1 : W1 F2F1

z5 : W5 z6 : W6

y3 : V3 x5 : U5

Manfred Broy 7Architectures: Interface and Composition, Trento, October 2023

Discrete systems: the modeling theory in a nutshell

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Forms of models
• mathematical
• logical
• graphical

Sets of typed channels

 X = {x1 : T1, x2 : T2, ... }
 Y = {y1 : S1, y2 : S2, ... }

syntactic interface

(X u Y)
data stream of type T

STREAM T = {	ℕ\{0} ® T*}

valuation of channel set X

X##⃗ = {X ® STREAM[T]}

interface behavior for syn. interface (XuY)

interface predicates

Q: X##⃗ ´ Y##⃗ ® %

represented by interface assertions:
logical formula with channel names
as variables for streams

Manfred Broy 8Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification - Data flow

MIX = (x, z: Tstr M� y: Tstr M): ∀ m Î M: m#x+m#z = m#y

MIX
∀ m Î M: m#x+m#z = m#y

x:M z:M

y:M

MIX _____________________________________
in x, z: TSTR M
out y: TSTR M
" m Î M: m#x+m#z = m#y

textual

by tableau

graphical

Manfred Broy 9Architectures: Interface and Composition, Trento, October 2023

Streams

M*|w = M* È Mw

Finite Streams: M* = ÈnÎℕ {t Î ℕ: 1 ≤ t ≤ n} → M

Infinite Streams: Mw = ℕ → M

Data type of streams over set M: Str M

Manfred Broy 10Architectures: Interface and Composition, Trento, October 2023

Timed Streams: Illustration: Time Flow and Data Flow

Timed stream x = ááa b bñ ácñ áñ áa añ áb c cñ áañ áñ áa a añ áb c bñ ábñ áñ ác c cñ … ñ
Time abstraction x̅ = áa b b c a a b c c a a a a b c b b c c c …ñ
Timing #x	= á3 1 0 2 3 1 0 3 3 1 0 3 …ñ
Elements at time @x = á1 1 1 2 4 4 5 5 5 6 8 8 8 9 9 9 10 12 12 12 … ñ

 #x(t) = #x(t) timing of x by the stream #x: ℕ+ → ℕ
n@x time of nth element in x

time

x a b b c a a b c c a a a a b c b b c c c

1 2 3 4 5 6 7 8 9 10 11 12

x" 3 1 0 2 3 1 0 3 3 1 0 3

Manfred Broy 11Architectures: Interface and Composition, Trento, October 2023

Timed Streams

Timed streams (M*)w = ℕ+ → M*

Finite timed streams (M*)* = Èn Î ℕ ({m Î ℕ+: m ≤ n} → M*)

x↓t : {n Î ℕ: 1 ≤ n ≤ t} → M*
1 ≤ n ≤ t Þ (x↓t)(n) = x(n)

#x number of elements in x
M#x number of elements in x that are in set M

m#x = {m}#x
Type of all timed streams: Tstr M

Manfred Broy 12Architectures: Interface and Composition, Trento, October 2023

Histories of Timed and Untimed Streams

Given a set of typed channel names
X = {c1:T1, …, cm:Tm}

by X we denote channel histories given by families of timed streams,
one timed stream for each of the channels:

X = (X → (M*)w)
Finite timed histories

Xfin = (X → (M*)*)
Stream histories

X	 = (X → M*|w)
Xfin = (X → M*)

Manfred Broy 13Architectures: Interface and Composition, Trento, October 2023

Syntactic interfaces

Given channel sets X and Y, a syntactic interface is denoted by

(X�Y)

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 14Architectures: Interface and Composition, Trento, October 2023

Interface specification predicates and assertions

Q: X ´ Y → %
Q = (X�Y): A

where A is an assertion with free identifiers from X and Y

MIX = (x, z: Tstr M� y: Tstr M): ∀ m Î M: m#x+m#z = m#y
MIX(x, z, y) = ∀ m Î M: m#x+m#z = m#y

(let M be a nonempty set/type)

We write Q::(X�Y) to express that Q is an interface predicate for the syntactic
interface (X�Y)

Ax1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

predicate assertion

Manfred Broy 15Architectures: Interface and Composition, Trento, October 2023

Delay and time out

FOW = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

Delay: d Î ℕ: d ≥ 1
FOWD = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

Ù ∀ t Î ℕ: m#(y↓t) ≥ m#(z↓t+d)
Time out: u Î ℕ: u ≥ 1
FOWTO = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

Ù ∀ t Î ℕ: m#(z↓t+u) ≥ m#(y↓t))
Delay and time out:
FOWD = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

Ù ∀ t Î ℕ: m#(z↓t+u) ≥ m#(y↓t) ≥ m#(z↓t+d)

Manfred Broy 16Architectures: Interface and Composition, Trento, October 2023

Refinement of interface predicates

An interface predicate Q’::(X�Y)
is called refinement of an interface predicate Q::(X�Y) if

Q’ Þ Q

Hiding

Manfred Broy 18Architectures: Interface and Composition, Trento, October 2023

Hiding

Given a specification

Q = (X�Y): A

where A is an assertion with free identifiers from X and Y and Y’ Í Y

(Hide Y’: Q)::(X�Y\Y’)
for x Î X, y’’ Î Y\Y’

(Hide Y’: Q)(x, y’’) = $ y Î Y: Q(x, y) Ù y’’ = y|(Y\Y’)

Causality

Manfred Broy 20Architectures: Interface and Composition, Trento, October 2023

Strongly Causal Interface Predicates

Q::(X�Y)

is strongly causal if for all x, z Î X, y Î Y, ∀ t Î ℕ

x↓t = z↓t Ù Q(x, y) Þ $ y'Î Y: Q(z, y') Ù y↓t+1 = y'↓t+1

For every interface predicate Q::(X�Y)
there exists a weakest refinement Q© of Q that is strongly causal

Note: If Q(x, y) = false for all x Î X, y Î Y then Q is strongly causal

Manfred Broy 21Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: Strong Causality

TRA = (x: Tstr M � y: Tstr M):
∀ m Î M: (m#x = 0 Þ m#y = 0) Ù (m#x = ¥ Þ m#y > 0)

TRA(x, y)
Þ

m#x = ¥ Þ $ t Î ℕ: m#y↓t > 0
TRA©(x, y)
Þ
 ∀ t Î ℕ: m#(x↓t) = 0 Þ m#(y↓t+1) = 0

Þ
m#x = ¥ Þ $ t Î ℕ: m#(x↓t) > 0 Ù m#(y↓t) = 0 Ù m#(y↓t+1) > 0

nucleus

strong causality

logical reasoning

logical reasoning

Manfred Broy 22Architectures: Interface and Composition, Trento, October 2023

Specification nuclei

In a specification we may give just a nucleus

MIX = (x, z: Tstr M� y: Tstr M): ∀ m Î M: m#x+m#z = m#y

This is an assertion that gives the key characteristic from which further
properties are deduced in refinement steps typically be the step to adding strong
causality –

going from MIX to MIX©.

Manfred Broy 23Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: Strong Causality

MIX = (x, z: Tstr M�y: Tstr M): ∀ m Î M: m#x+m#z = m#y

MIX©(x, y) = ∀ m Î M: m#x+m#z = m#y
Ù ∀ t Î ℕ: m#(x↓t)+m#(z↓t) ≥ m#(y↓t+1)

FOW = (y: Tstr M�x: Tstr M): ∀ m Î M: m#x = m#y

FOW©(x, y) = ∀ m Î M: m#x = m#y Ù ∀ t Î ℕ: m#(y↓t) ≥ m#(x↓t+1)

nucleus

nucleus

Manfred Broy 24Architectures: Interface and Composition, Trento, October 2023

Input enabledness

If Q::(X�Y) ≠ false is strongly causal then Q is input enabled

since there exists z Î X and y Î Y such that Q(x, y)
for all x Î X

x↓0 = z↓0 Ù Q(z, y) Þ $ y'Î Y: Q(x, y') Ù y↓1 = y'↓1

Realizability

Manfred Broy 26Architectures: Interface and Composition, Trento, October 2023

Strongly Causal Functions

f: X → Y

is strongly causal if for t Î ℕ

x↓t = z↓t Þ f(x)↓t+1 = f(z)↓t+1

Then we write SC[f]

Every strongly causal f has a unique fixpoint (Proof: Banach’s Fixpoint Theorem)

Manfred Broy 27Architectures: Interface and Composition, Trento, October 2023

Fully Realizable Predicates

Q::(X�Y)
Real[Q] = {f Î X → Y: SC[f] Ù ∀ x Î X: Q(x, f(x))}

Real[Q] denotes the set of realizations of Q
Q is realizable if $ f Î Real[Q]

Q is fully realizable if Q is realizable and
Q(x, y) = $ f Î Real[Q]: y = f(x)

Every realization f Î Real[Q] defines a strategy to compute y = f(x) given x
such that Q(x, y) holds

Manfred Broy 28Architectures: Interface and Composition, Trento, October 2023

Fully Realizable Predicates

For every predicate Q::(X�Y) there exists a weakest refinement Q® of Q

Q®(x, y) = $ f Î Real[Q]: y = f(x)

Q® is fully realizable if Q is realizable

Q® = false if Q is not realizable

Manfred Broy 29Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: Strong Realizability

INF = (x: Tstr M � y: Tstr M): #x = ¥ Þ #y = 0

INF is not strongly causal, realizable, but not fully realizable

INF®(x, y)
Þ

#y = 0

nucleus

full realizability

Manfred Broy 30Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: Strong Realizability

REP = (x: Tstr M � y: Tstr M):
(#x < ¥ Þ #y = 0) Ù (#x = ¥ Þ #y = ¥)

REP is strongly causal

REP®(x, y)
Þ

false

nucleus

realizability

Manfred Broy 31Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: full realizability

NoID = ({x: Tstr M} � {y: Tstr M}): x ≠ y

NoID is strongly causal

NoID®(x, y)
Þ

false

nucleus

strong causality

full realizability

Manfred Broy 32Architectures: Interface and Composition, Trento, October 2023

A specification that is realizable, strongly causal but not fully realizable

DEMO = (x: Tstr M�y: Tstr M): x ≠ y Ú y = e where e is the stream with #e = 0

DEMO is strongly causal
x↓t = z↓t Ù (x ≠ y Ú y = e) Þ $ y'Î Y: (z ≠ y' Ú y' = e) Ù y↓t+1 = y'↓t+1

DEMO is realizable
f(x) = e

but not fully realizable: e is the only fixpoint of DEMO:
DEMO(e, y) holds for all y with y ≠ e
There is no realization f with f(e) ≠ e since f has a unique fixpoint z where
DEMO(z, f(z)) and z = f(z). Since DEMO(z, z) implies z = e we get f(e) = e

Assumptions and Commitments

Manfred Broy 34Architectures: Interface and Composition, Trento, October 2023

Assumption/Commitment

How to deal with specifications, that are not realizable

Example:

Here M©x is the sub-stream of x consisting of the elements in set M
x ⊑ y stands for stream x is prefix of stream y

An interactive queue

Queue
 in x: Str Data | {req}
 out y: Str Data
 Data©y ⊑	Data©x
 #y = req#x

Manfred Broy 35Architectures: Interface and Composition, Trento, October 2023

Inconsistence with strong causality: not input enabled

However, if we require
Data©y ⊑ Data©x

#y = req#x
then there exist input streams x such that there does not exist some output y
such that Queue(x, y) - Example: x = áreqñ

We define the assertion Asu(x) that has to hold for x:

 Asu(x) = " z Î Str Data | {req}: z ⊑ x Þ req#z ≤ Data#z

QueueAC(x, y) = (Asu(x) Þ Queue(x, y))

Manfred Broy 36Architectures: Interface and Composition, Trento, October 2023

Interfaces with assumptions

For the syntactic interface (X�Y) we may include

• an assumption Asu(y, x) which is a specification of the inverse interface (Y�X)
and defines properties of the context

• a commitment Com(x, y) which is a specification of the behavior the syntactic
interface (X�Y) as long as the assumption is fulfilled.

this leads to the specification
Asu(y, x) Þ Com(x, y)

Manfred Broy 37Architectures: Interface and Composition, Trento, October 2023

Example: System interface specification

A transmission component TMCWA

TMCWA
 in x: Tstr M
 out y: Tstr M
 assume " t Î ℕ: #x¯t ≤ 1+#y¯t
 commit " m Î M: m#x = m#y

TMCWAx:T y:T

Operational Semantics:
Moore machines

Manfred Broy 39Architectures: Interface and Composition, Trento, October 2023

Moore machines

For syntactic interface (X � Y), a generalized nondeterministic (total) Moore
machine with state space S is a pair (D, L) where D is a total state transition
function

D: (S ´ Xfin) ® Ã(S ´ Yfin)\{Æ}

and L Í S is a nonempty set of initial states and for a Î Xfin, b Î Yfin, s, s’Î S
(s’, b) Î D(s, a)

the output b does not depend on the input a but only on the state s.
Formally defined, there exists an output function:

X: S ® Ã(Yfin)\{Æ}
such that

" s Î S, a Î Xfin: X(s) = {b Î Yfin: $ s’ Î S: (s’, b) Î D(s, a)}

Manfred Broy 40Architectures: Interface and Composition, Trento, October 2023

Moore machines compute interface behavior

We write (D, L)::(X�Y) to express that (D, L) is the Moore machine that operates
over the syntactic interface (X�Y).

(D, L)::(X�Y) is called deterministic if the for all states s Î S, histories a Î Xfin
the sets L and D(s, a) are one-element.

(D, L)::(X�Y) calculates for an input history x Î X	an output history y Î Y, if there
exist states s0 Î L and st Î S for all t Î ℕ and

 (st+1, y(t)) Î D(st, x(t))

Then the pair (x, y) of histories is called a behavioral instance of (D, L)::(X�Y)

States are considered as local, as hidden, while input and output is observable.

Manfred Broy 41Architectures: Interface and Composition, Trento, October 2023

Moore machines compute infertace behavior

For each history x Î X	 a Moore machine (D, L)::(X�Y) computes an interface
predicate

[[D, L]]: X	´ Y	® %
defined by

 [[D, L]](x, y) = $ s Î (ℕ ® S): s0 Î	L Ù " t Î ℕ: (st+1, y(t)) Î D(st, x(t))

(D’, L’)::(X�Y) is called (extensional) refinement
of Moore machine (D, L)::(X�Y) if

[[D’, L’]] Þ [[D, L]]

Manfred Broy 42Architectures: Interface and Composition, Trento, October 2023

Functional Moore machines

For every Moore machine (D, L)::(X�Y) its associated interface predicate
 [[D, L]]::(X�Y)
is fully realizable and thus also strongly causal.

Every strongly causal function f: X ® Y	 defines a deterministic Moore machine
 (D(X�Y), {f})::(X�Y)
where S(X�Y) is the set of strongly causal functions in X ® Y	 and
 D(X�Y): (S(X�Y) ´ Xfin) ® Ã(S(X�Y) ´ Yfin)\{Æ}
is defined for histories x Î X, y Î Y and strongly causal functions f, f’: X ® Y	 by

D(X�Y)(f, a) = {(f’, b)} where for all x Î X: f(áañˆx) = ábñˆf’(x)

Manfred Broy 43Architectures: Interface and Composition, Trento, October 2023

Deterministic Moore machines

Define for Moore machine (D, L)::(X�Y) by DET(D, L) the set of deterministic
Moore machines that are refinements of (D, L); then

 [[D, L]](x, y) = $ (D', L') Î DET(D, L): [[D', L']] (x, y)

For every Moore machine (D, L)::(X�Y) its set of realizations f: X ® Y	of [[D, L]]
is equal to the set of strongly causal functions

{f': X ® Y	: $ (D', L') Î DET(D, L): " x: [[D, L]](x, f(x))}

For every Moore machine (D, L)::(X�Y) its interface predicate [[D, L]]::(X�Y) is
the disjunction of the associated interface predicates of all its deterministic
refinements.

Feature Interaction

Manfred Broy 45Architectures: Interface and Composition, Trento, October 2023

Projection

Given a specification

(X�Y): Q
where X’ Í X, Y’ Í Y

a subservice Q†(X’�Y’) is defined
by projection

 (Q†(X’�Y’))(x’, y’) = $ x Î X, y Î Y: Q(x, y) Ù x’ = x|X’ Ù y’ = y|Y’

Manfred Broy 46Architectures: Interface and Composition, Trento, October 2023

Feature interaction

Can we decompose a system

Q1

X1

Y1

Q2

X2

Y2
…

…

…

…

Q

X

Y

. . .

. . .

into

Manfred Broy 47Architectures: Interface and Composition, Trento, October 2023

Feature Interaction

Let X = X1ÈX2, Y = Y1ÈY2, where the sets X1, X2, Y1, and Y2 are pairwise disjoint

The subservices Q1 = Q|(X1�Y1) and Q2 = Q|(X2�Y2) of service Q are free of
feature interactions if

Q(x, y) = (Q1(x|X1, y|Y1) Ù Q2(x|X2, y|Y2))

Q

Q1

X1

Y1

Q2

X2

Y2
…

…

…

…

Distribution and Architecture
Composition

Manfred Broy 49Architectures: Interface and Composition, Trento, October 2023

Composition

We compose systems syntactically and semantically by their interfaces

Manfred Broy 50Architectures: Interface and Composition, Trento, October 2023

Syntactic composability

Specifications Sk = (Xk�Yk):Qk where k = 1, 2, are composable if

X1ÇX2 = Æ
Y1ÇY2 = Æ

To make life simple we usually assume in addition:

X1ÇY1 = Æ
X2ÇY2 = Æ

Manfred Broy 51Architectures: Interface and Composition, Trento, October 2023

Composition Diagrams

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2
S2

z2

z1

y2

x2

S1´S2

S1ÄS2

S2
 in x2, z2: M
 out y2, z1: M
 Q2

S1
 in x1, z1: M
 out y1, z2: M
 Q1

 S1rS2
 in x1, x2: M
 out y1, z2, y2, z1: M
 Q1 Ù Q2

Manfred Broy 52Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: Strong Causality and Composition

MIX = (x, z: Tstr M�y: Tstr M): ∀ m Î M: m#x+m#z = m#y

FOW = (y: Tstr M�z: Tstr M): ∀ m Î M: m#z = m#y

(MIX(x, z, y) Ù FOW(y, z)) Þ ∀ m Î M: m#x+m#y = m#y

Manfred Broy 53Architectures: Interface and Composition, Trento, October 2023

Composition Diagrams

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2

S2

x2

y2

z2

z1

S1

x1

y1

z1

z2
S2

z2

z1

y2

x2

S1´S2

S1ÄS2

S2
 in x2, z2: M
 out y2, z1: M
 Q2

S1
 in x1, z1: M
 out y1, z2: M
 Q1

 S1rS2
 in x1, x2: M
 out y1, z2, y2, z1: M
 Q1® Ù Q2®

Manfred Broy 54Architectures: Interface and Composition, Trento, October 2023

Example: Interface Specification: Strong Causality and Composition

MIX®(x, y) = ∀ m Î M: m#x+m#z = m#y
Ù ∀ t Î ℕ: m#(x↓t)+m#(z↓t) ≥ m#(y↓t+1)

FOW®(y, z) = ∀ m Î M: m#z = m#y Ù ∀ t Î ℕ: m#(y↓t) ≥ m#(z↓t+1)

(MIX(x, z, y) Ù FOW(y, z)) Þ ∀ m Î M: m#x+m#y = m#y

(MIX®(x, z, y) Ù FOW® (y, z)) Þ ∀ m Î M: m#x+m#y = m#y
Ù∀ t Î ℕ: m#(x↓t)+m#(y↓t) ≥ m#(y↓t+1)

Þ (m#x = 0 Þ m#y = 0)

Manfred Broy 55Architectures: Interface and Composition, Trento, October 2023

Composition and Full Realizability

If two composable specifications S1 = (X1�Y1): Q1 and S2 = (X2�Y2): Q2

• are fully realizable

• then their composition S1rS2 with assertion Q1ÙQ2 is fully realizable

If assertions W1 and W2 are weaker than fully realizable: Q1 Þ W1, Q2 Þ W2

Then W1 Ù W2 is generally a weaker assertion (correct but not necessary complete)

 (Q1 Ù Q2) Þ (W1 Ù W2)

Manfred Broy 56Architectures: Interface and Composition, Trento, October 2023

Composing Moore machines

We compose Moore machines (Dk, Lk)::(Xk�Yk) for k = 1, 2, where X1ÇX2 = Æ,
Y1ÇY2 = Æ by parallel composition to a Moore machine

((D1, L1)r(D2, L2)::(X � Y))
where X = (X1ÈX2)\Y, Y = Y1ÈY2 defined by

(D, L) = ((D1, L1) r (D2, L2))
where for

 S = (S1 ´ S2)

 L = {(s1, s2): s1 Î S1 Ù s2 Î S2}

 D((s1, s2), x) = {((t1, t2), y): (t1, y|Y1) Î D1(s1, x|X1) Ù (t2, y|Y2) Î D2(s2, x|X2) }

Manfred Broy 57Architectures: Interface and Composition, Trento, October 2023

Composing Moore machines

For composable Moore machines (Dk, Lk)::(Xk�Yk) for k = 1, 2, we get

 [[(D1, L1)r(D2, L2)]] = [[(D1, L1)]]r[[(D2, L2)]]

For every fully realizable interface predicate Q::(X�Y) there exists a Moore
machine such that
 (D, L)::(X�Y) with Q = [[(D, L)]]

For a Moore machine (D, L)::(X�Y) the interface predicate [[(D, L)]] ::(X�Y) is
• fully realizable and
• the set of fully realizable interface predicates forms a denotational semantics

for systems implemented by Moore machines.

Manfred Broy 58Architectures: Interface and Composition, Trento, October 2023

Design Framework

Semantic driven system development
• Encapsulation
◊ Form architectural elements with interfaces that encapsulate the access by interfaces

• Information hiding
◊ Hide implementation details not needed to understand the effect on the context

• Functional abstraction: Model the interface including interface behavior
• Composition
◊ Define the interface behavior of composed systems from the interface behavior of the

components

• Interface refinement
◊ Make specifications more detailed

• Modularity (generalization of Liskov‘s substitution principle)
◊ Guarantee that refinement of specifications of components leads to refinement of

specifications of composed systems

Layered Architectures

Manfred Broy 60Architectures: Interface and Composition, Trento, October 2023

Layers in Layered Architectures

• Layered architectures have many advantages.
• In many applications, therefore layered architectures are applied.

L = (x: X, b: B�y: Y, a: A): R(a, b) Þ Q(x, y)

Let the interface behavior
 S = (x: X�y: Y): Q(x, y)
denote the provided service and
 W = (a: A�b: B): R(a, b)
denote the required service.

System S

x1: X1 xn: Tstr Tn

ym: Tstr Smy1: Tstr S1 …

Layer L

x: X y: Y

a: A b: B

Manfred Broy 61Architectures: Interface and Composition, Trento, October 2023

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L

Forming Layered Architectures

We have two layers (k = 1, 2)
 Lk = (xk: Xk, bk: Bk�yk: Yk, ak: Ak): Rk(ak, bk) Þ Qk(xk, yk)
that fit syntactically together, if
 X1 = A2 and Y1 = B2,
and semantically if the provided service
 S1 = (x1: X1�y1: Y1): Q1(x1, y1)
of the lower layer L1 is a refinement of
the requested service
 W2= (a2: A2�b2: B2): R2(a2, b2)
of the upper layer L2 which means
(note that X1 = B2 and Y1 = A2)
 Q1(x1, y1) Þ R2(x1, y1)

=

Physical Device

a: A b: B

Physical Device

a: A

Control Layer

x: X y: Y

b: B

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L

Ä

Manfred Broy 62Architectures: Interface and Composition, Trento, October 2023

Proof

We compose the two layers to a system L
 L
 = Hide x1 Î : X1, y1: Y1: L1 r L2

 = (x2: X2, b1: B1�y2: Y2, a1: A1): $ x1 Î : X1, y1: Y1:
 (R1(a1, b1) Þ Q1(x1, y1)) Ù (R2(x1, y1) Þ Q2(x2, y2))

If Q1(x1, y1) Þ R2(x1, y1) holds we conclude
 L = (x2: X2, b1: B1�y2: Y2, a1: A1): (R1(a1, b1) Þ Q2(x2, y2))

System L which is the result of composing the two layers is a layer again with
the provided service of layer L2 and the requested service of layer L1.

Manfred Broy 63Architectures: Interface and Composition, Trento, October 2023

LA

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer Ln

xn: Xn yn: Yn

an: An bn: Bn

. . .

Forming Layered Architectures

If the layers fit together, we get a layered architecture
Lk=(xk:Xk, bk:Bk�yk:Yk, ak:Ak): Rk(ak, bk) Þ Qk(xk, yk)
that fit syntactically together, if
 Xk = Ak+1 and Yk = Bk+1,
and semantically if the provided service
Sk = (xk: Xk�yk: Yk): Qk(xk, yk)
of lower layer Lk is a refinement of
the requested service
Wk+1= (ak+1: Ak+1�bk+1: Bk+1): R2(ak+1, bk+1)
of the upper layer L2 which means
 Qk(xk, yk) Þ Rk+1(xk, yk)

Manfred Broy 64Architectures: Interface and Composition, Trento, October 2023

architecture
design

architecture
verification
S Ü C1ÄC2ÄC3

C1 C2 C3C2
System Specification

Sx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Validation

Informal
requirements

System delivery

System verification
R Þ S

Rx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Integration

R = R1ÄR2ÄR3

components implementation

Verification R1 Þ C1 R2 Þ C2 R3 Þ C3

Int
eg

rat
ionimplementation

design

Specification

de
liv

er
y

S

C1 C2 C3

Manfred Broy 65Architectures: Interface and Composition, Trento, October 2023

The Two Basic Models

State based models of concurrency
• Influenced by von Neumann

architecture: shared state
• Interleaving concurrency
◊ implicit
◊ nondeterminism
◊ deadlock

• State based assertion techniques
◊ ghost variables,
◊ stuttering
◊ prophecy variables

• Composition
◊ fairness
◊ intensional

History based models of concurrency
• Data Flow
• Infinite computations
◊ streams and histories

• Explicit Concurrency
• Safety and liveness
• Composition
◊ compositionality
◊ extensionality principle

• Distribution
• Abstraction: modularity
◊ information hiding/encapsulation

• Components

Manfred Broy 66Architectures: Interface and Composition, Trento, October 2023

Concluding Remarks

• Expressive power and flexibility
◊ In principle all kinds of behavior can be

specified
◊ Specifications can be noncausal, weakly

or strongly causal, realizable or fully
realizable

• Specification, composition,
verification and refinement by a
calculus that is
◊ Sound
◊ Relatively complete
◊ Making specification f.r. (often s.c. is

enough) is sufficient for all proofs

• Methodological extensions
◊ Assumption/Commitment specifications
◊ Time free specifications

• Architecture design by specifications
• Further Extensions
◊ Infinite networks (recursive definitions of

networks)
◊ Dynamic systems
◊ Probability

Manfred Broy 67Architectures: Interface and Composition, Trento, October 2023

Topics for future research

• A tool for proving in the calculus

• A programming language for implementation

• Probabilities for interface behavior

• A time free version for non-time-sensitive interface specifications
◊ Ambiguous operators

