Interaction, Concurrency, Nondeterminism, Time, Composition, Distribution, Abstraction

An Interface Centric Approach

Practical and Theoretical Consequences

Manfred Broy

Technische Universität München Institut für Informatik D-80290 Munich, Germany

Topics of Concurrency

Theoretical

- Nondeterminism, concurrency
	- ◊ Parallel operators (parallel or)
	- ◊ Ambiguity
- State machines
- Computability
	- ◊ Algorithms
	- ◊ Models of computability
	- ◊ Time
	- \Diamond Infinite computations
	- ◊ Unbounded nondeterminism
- Denotational semantics
- Fixpoint theory

Practical

- Nondeterminism and ambiguity
- Abstraction: Interface behavior
- Modularity
	- \diamond Encapsulation, information hiding, interface behavior
- Real time
- Graphical models
- Specification
- Distribution and architecture
	- ◊ Composition
- Verification
- Missing programming languages

General Observations

- Numerous models
	- ◊ Petri Nets, Data Flow, TLA , CSP, CCS, B, Unity, Rely/Guarantee, State Charts, Esterel, …
- Missing studies of the sufficient comparisons of different approaches
- Theoretical consequences not sufficiently investigated
	- \Diamond How does the notion of algorithm generalize to concurrency and vice versa
	- ◊ What about computability when considering nondeterminism, concurrency and/or time
- Practice versus theory
	- \Diamond In theoretical approaches practical consequences often not sufficiently taken care of
	- \Diamond In practical approaches theoretical consequences often not sufficiently taken care of
- Programming languages based on the Neumann architectures
	- ◊ Shared state
- A lot of concepts on low level implementation issues
	- \diamond Operating systems, scheduling, bus systems

Practical challenges

Interface Based Modelling Theory

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy **FIFT**

Discrete systems: the modeling theory in a nutshell

Example: Interface Specification - Data flow

Timed Streams

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy **11**

Histories of Timed and Untimed Streams

Given a set of typed channel names

$$
X = \{c_1: T_1, ..., c_m: T_m\}
$$

by \vec{X} we denote channel histories given by families of timed streams, one timed stream for each of the channels:

$$
\vec{X} = (X \rightarrow (M^*)^{\omega})
$$

Finite timed histories

$$
\vec{X}_{fin} = (X \rightarrow (M^*)^*)
$$

Stream histories

$$
\overline{X} = (X \rightarrow M^{*|\omega})
$$

$$
\overline{X}_{fin} = (X \rightarrow M^{*})
$$

Given channel sets X and Y , a syntactic interface is denoted by

$(X \triangleright Y)$

Interface specification predicates and assertions

interface $(X \triangleright Y)$

FOW = (y: Tstr M \blacktriangleright z: Tstr M): ∀ m ∈ M: m#z = m#y Delay: $d \in \mathbb{N}: d \ge 1$ FOWD = (y: Tstr M \blacktriangleright z: Tstr M): ∀ m ∈ M: m#z = m#y $\wedge \forall t \in \mathbb{N}$: m#(y↓t) ≥ m#(z↓t+d) Time out: $u \in \mathbb{N}: u \ge 1$ FOWTO = (y: Tstr M \blacktriangleright z: Tstr M): ∀ m ∈ M: m#z = m#y $\wedge \forall t \in \mathbb{N}$: m#(z↓t+u) ≥ m#(y↓t)) Delay and time out: FOWD = (y: Tstr M > z: Tstr M): \forall m \in M: m#z = m#y $\wedge \forall t \in \mathbb{N}$: m#(z↓t+u) ≥ m#(y↓t) ≥ m#(z↓t+d)

Refinement of interface predicates

An interface predicate $Q'::(X\triangleright Y)$ is called refinement of an interface predicate Q :: $(X \triangleright Y)$ if

 $O' \Rightarrow O$

Hiding

Hiding

Given a specification

 $Q = (X \triangleright Y)$: A

where A is an assertion with free identifiers from X and Y and Y' \subseteq Y

(Hide Y': Q):: $(X \triangleright Y \setminus Y')$ for $x \in \vec{X}$, $y'' \in \overrightarrow{Y| Y'}$ (Hide Y': Q)(x, y'') = $\exists y \in \vec{Y}$: Q(x, y) \land y'' = y|(Y\Y')

Causality

Strongly Causal Interface Predicates

 $Q::(X\triangleright Y)$

is strongly causal if for all $x, z \in \vec{X}$, $y \in \vec{Y}$, $\forall t \in \mathbb{N}$

 $x \downarrow t = z \downarrow t \wedge Q(x, y) \Rightarrow \exists y' \in \vec{Y}: Q(z, y') \wedge y \downarrow t+1 = y' \downarrow t+1$

For every interface predicate $Q::(X\triangleright Y)$ there exists a weakest refinement Q° of Q that is strongly causal

Note: If Q(x, y) = false for all $x \in \vec{X}$, $y \in \vec{Y}$ then Q is strongly causal

Specification nuclei

In a specification we may give just a nucleus

MIX = (x, z: Tstr M \triangleright y: Tstr M): \forall m \in M: m#x+m#z = m#y

This is an assertion that gives the key characteristic from which further properties are deduced in refinement steps typically be the step to adding strong causality –

going from MIX to MIX©.

Example: Interface Specification: Strong Causality

MIX = (x, z: Tstr M \triangleright y: Tstr M): \forall m \in M: m#x+m#z = m#y $MIX^{\odot}(x, y) = \forall m \in M: m#x+m#z = m#y$ $\wedge \forall t \in \mathbb{N}$: m#(x↓t)+m#(z↓t) ≥ m#(y↓t+1) nucleus

FOW = (y: Tstr M \triangleright x: Tstr M): \forall m ∈ M: m#x = m#y nucleus

FOW©(x, y) = \forall m \in M: m#x = m#y $\land \forall$ t \in N: m#(y↓t) ≥ m#(x↓t+1)

Input enabledness

If $Q::(X\triangleright Y) \neq false$ is strongly causal then Q is input enabled

since there exists $z \in \vec{X}$ and $y \in \vec{Y}$ such that $Q(x, y)$ for all $x \in \overrightarrow{X}$

$$
x \downarrow 0 = z \downarrow 0 \land Q(z, y) \Rightarrow \exists y' \in \vec{Y} : Q(x, y') \land y \downarrow 1 = y' \downarrow 1
$$

Realizability

Strongly Causal Functions

f: $\vec{X} \rightarrow \vec{Y}$

is strongly causal if for $t \in \mathbb{N}$

 $x \downarrow t = z \downarrow t \Rightarrow f(x) \downarrow t+1 = f(z) \downarrow t+1$

Then we write SC[f]

Every strongly causal f has a unique fixpoint (Proof: Banach's Fixpoint Theorem)

Fully Realizable Predicates

 $Q::(X\triangleright Y)$ $Real[Q] = {f \in \overrightarrow{X} \rightarrow \overrightarrow{Y}: SC[f] \land \forall x \in \overrightarrow{X}: Q(x, f(x))}$

Real^[Q] denotes the set of realizations of Q Q is realizable if $\exists f \in Real[Q]$

Q is fully realizable if Q is realizable and $Q(x, y) = \exists f \in Real[Q]: y = f(x)$

Every realization $f \in Real[Q]$ defines a strategy to compute $y = f(x)$ given x such that $Q(x, y)$ holds

Fully Realizable Predicates

For every predicate Q:: $(X \triangleright Y)$ there exists a weakest refinement Q^{\circledast} of Q

 $Q^{\circledR}(x, y) = \exists f \in Real[Q]: y = f(x)$

 Q^{\circledR} is fully realizable if Q is realizable

 Q^{\circledR} = false if Q is not realizable

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy **THE Report Architectures:** Interface and Composition, Trento, October 2023

A specification that is realizable, strongly causal but not fully realizable

DEMO = (x: Tstr M \triangleright y: Tstr M): $x \neq y \lor y = \varepsilon$ where ε is the stream with $\# \varepsilon = 0$

DEMO is strongly causal $x \downarrow t = z \downarrow t \wedge (x \neq y \vee y = \varepsilon) \Rightarrow \exists y' \in \vec{Y}$: $(z \neq y' \vee y' = \varepsilon) \wedge y \downarrow t+1 = y' \downarrow t+1$

DEMO is realizable $f(x) = \varepsilon$

but not fully realizable: ϵ is the only fixpoint of DEMO:

DEMO(ε , y) holds for all y with $y \neq \varepsilon$ There is no realization f with $f(\epsilon) \neq \epsilon$ since f has a unique fixpoint z where DEMO(z, f(z)) and $z = f(z)$. Since DEMO(z, z) implies $z = \varepsilon$ we get $f(\varepsilon) = \varepsilon$

Assumptions and Commitments

Assumption/Commitment

How to deal with specifications, that are not realizable

Example: An interactive queue

> **Queue in** x: Str Data | {req} **out** y: Str Data Data©y ⊑Data©x $#y = \text{req#x}$

Here M©x is the sub-stream of x consisting of the elements in set M x ⊑ y stands for stream x is prefix of stream y

However, if we require

$$
Data\textcircled{y} \subseteq Data\textcircled{x}
$$

$$
\#y = \text{req} \#x
$$

then there exist input streams x such that there does not exist some output y such that $Queue(x, y)$ - Example: $x = \langle \text{req} \rangle$

We define the assertion $Asu(x)$ that has to hold for x:

Asu(x) = \forall z \in Str Data | {req}: $z \sqsubseteq x \Rightarrow$ req#z \leq Data#z

QueueAC(x, y) = $(Asu(x) \Rightarrow Queue(x, y))$

Interfaces with assumptions

For the syntactic interface $(X \triangleright Y)$ we may include

- an assumption $Asu(y, x)$ which is a specification of the *inverse* interface $(Y \triangleright X)$ and defines properties of the context
- a commitment $Com(x, y)$ which is a specification of the behavior the syntactic interface $(X \triangleright Y)$ as long as the assumption is fulfilled.

this leads to the specification

Asu(y, x) \Rightarrow Com(x, y)

Example: System interface specification

Operational Semantics: Moore machines

For syntactic interface $(X \triangleright Y)$, a generalized nondeterministic (total) Moore machine with state space Σ is a pair (Δ, Λ) where Δ is a *total state transition function*

$$
\Delta\colon (\Sigma\times\overline{\mathsf{X}}_{\mathsf{fin}})\rightarrow~\wp\,(\Sigma\times\overline{\mathsf{Y}}_{\mathsf{fin}})\backslash\{\varnothing\}
$$

and $\Lambda \subseteq \Sigma$ is a *nonempty* set of *initial* states and for $a \in \overline{X}_{fin}$, $b \in \overline{Y}_{fin}$, σ , $\sigma \in \Sigma$ $(\sigma, b) \in \Delta(\sigma, a)$

the output b does not depend on the input a but only on the state σ .

Formally defined, there exists an output function:

$$
\Xi\colon \Sigma\to\text{ so }\overline{(Y_{fin})}\backslash\{\varnothing\}
$$

such that

$$
\forall \ \sigma \in \Sigma, \ a \in \overline{X}_{fin} : \Xi(\sigma) \equiv \{b \in \overline{Y}_{fin} : \ \exists \ \sigma' \in \Sigma : (\sigma', \ b) \in \Delta(\sigma, \ a) \}
$$

Moore machines compute interface behavior

We write (Δ, Λ) :: $(X \triangleright Y)$ to express that (Δ, Λ) is the Moore machine that operates over the syntactic interface $(X \triangleright Y)$.

 (Δ, Λ) ::(XV) is called *deterministic* if the for all states $\sigma \in \Sigma$, histories a $\in \overline{X}_{fin}$ the sets Λ and $\Delta(\sigma, a)$ are one-element.

 (Δ, Λ) ::(X \blacktriangleright Y) *calculates* for an input history $x \in \overrightarrow{X}$ an output history $y \in \overrightarrow{Y}$, if there exist states $\sigma_0 \in \Lambda$ and $\sigma_t \in \Sigma$ for all $t \in \mathbb{N}$ and

$$
(\sigma_{t+1},\,y(t))\in\Delta(\sigma_t,\,x(t))
$$

Then the pair (x, y) of histories is called a *behavioral instance* of (Δ, Λ) :: $(X \triangleright Y)$

States are considered as local, as hidden, while input and output is observable.

For each history $x \in \overrightarrow{X}$ a Moore machine (Δ, Λ) :: $(X \triangleright Y)$ computes an interface predicate

$$
[[\Delta, \Lambda]]: \vec{X} \times \vec{Y} \to \mathbb{B}
$$

defined by

$$
[[\Delta, \, \Lambda]](x, y) = \exists \; \sigma \in (\mathbb{N} \to \Sigma) \colon \sigma_0 \in \Lambda \, \wedge \, \forall \; t \in \mathbb{N} \colon (\sigma_{t+1}, \, y(t)) \in \Delta(\sigma_t, \, x(t))
$$

 (Δ', Λ') :: $(X \triangleright Y)$ is called (extensional) *refinement* of Moore machine (Δ, Λ) :: $(X \triangleright Y)$ if

$[[\Delta', \Lambda']] \Rightarrow [[\Delta, \Lambda]]$

Functional Moore machines

For every Moore machine (Δ, Λ) ::(X V) its associated interface predicate $[[\Delta, \Lambda]]$::(X \blacktriangleright Y)

is fully realizable and thus also strongly causal.

Every strongly causal function f: $\vec{X} \rightarrow \vec{Y}$ defines a deterministic Moore machine $(\Delta$ _(X^{*}Y), {f})::(X^{*}Y) where $\Sigma_{(X\blacktriangleright Y)}$ is the set of strongly causal functions in $\vec{X} \to \vec{Y}$ and $\Delta_{(X\blacktriangleright Y)}$: $(\Sigma_{(X\blacktriangleright Y)} \times \overline{X}_{fin}) \rightarrow \wp (\Sigma_{(X\blacktriangleright Y)} \times \overline{Y}_{fin})\setminus \{\emptyset\}$ is defined for histories $x \in \overline{X}$, $y \in \overline{Y}$ and strongly causal functions f, f': $\overline{X} \to \overline{Y}$ by $\Delta(X\triangleright Y)(f, a) = \{(f', b)\}\$ where for all $x \in \vec{X}$: $f(\langle a \rangle^x x) = \langle b \rangle^x f'(x)$

Define for Moore machine (Δ, Λ) :: $(X \triangleright Y)$ by DET (Δ, Λ) the set of deterministic Moore machines that are refinements of (Δ, Λ) ; then

$$
[[\Delta, \Lambda]](x, y) = \exists (\Delta', \Lambda') \in \text{DET}(\Delta, \Lambda): [[\Delta', \Lambda']] (x, y)
$$

For every Moore machine (Δ, Λ) ::(X V) its set of realizations f: $\vec{X} \to \vec{Y}$ of [[Δ , Λ]] is equal to the set of strongly causal functions

$$
\{f': \vec{X} \to \vec{Y} : \exists (\Delta', \Lambda') \in \text{DET}(\Delta, \Lambda) : \forall x: [[\Delta, \Lambda]](x, f(x))\}
$$

For every Moore machine (Δ, Λ) ::(X V) its interface predicate $[[\Delta, \Lambda]]$::(X V) is the disjunction of the associated interface predicates of all its deterministic refinements.

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy **TITT**

Feature Interaction

Given a specification

 $(X \triangleright Y)$: Q where $X' \subseteq X$, $Y' \subseteq Y$

a subservice $Q^+(X' \blacktriangleright Y')$ is defined by projection

 $(Q+(X' \triangleright Y'))(x', y') = \exists x \in \vec{X}, y \in \vec{Y}: Q(x, y) \wedge x' = x|X' \wedge y' = y|Y'$

Let $X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$, where the sets X_1 , X_2 , Y_1 , and Y_2 are pairwise disjoint

The subservices $Q_1 = Q|(X_1 \triangleright Y_1)$ and $Q_2 = Q|(X_2 \triangleright Y_2)$ of service Q are free of feature interactions if

 $Q(x, y) = (Q_1(x|X_1, y|Y_1) \wedge Q_2(x|X_2, y|Y_2))$

Distribution and Architecture Composition

Composition

Syntactic composability

Specifications $S_k = (X_k \triangleright Y_k): Q_k$ where $k = 1, 2$, are composable if

$$
X_1 \cap X_2 = \emptyset
$$

$$
Y_1 \cap Y_2 = \emptyset
$$

To make life simple we usually assume in addition:

$$
X_1 \cap Y_1 = \emptyset
$$

$$
X_2 \cap Y_2 = \emptyset
$$

Example: Interface Specification: Strong Causality and Composition

MIX = (x, z: Tstr M \blacktriangleright y: Tstr M): \forall m \in M: m#x+m#z = m#y

FOW = (y: Tstr M \blacktriangleright z: Tstr M): ∀ m ∈ M: m#z = m#y

 $(MIX(x, z, y) \wedge FOW(y, z)) \Rightarrow \forall m \in M: m \#x + m \#y = m \#y$

Example: Interface Specification: Strong Causality and Composition

 $MIX^{\circledR}(x, y) = \forall m \in M: m#x+m#z = m#y$ $\land \forall t \in \mathbb{N}$: m#(x↓t)+m#(z↓t) ≥ m#(y↓t+1) FOW®(y, z) = \forall m \in M: m#z = m#y $\land \forall$ t \in N: m#(y\t) ≥ m#(z\t+1) $(MIX(x, z, y) \wedge FOW(y, z)) \Rightarrow \forall m \in M: m \#x + m \#y = m \#y$ $(MIX^{\circledR}(x, z, y) \wedge \text{FOW}^{\circledR}(y, z)) \Rightarrow \forall m \in M: m \#x + m \#y = m \#y$ $\wedge \forall t \in \mathbb{N}$: m#(x↓t)+m#(y↓t) ≥ m#(y↓t+1)

 \Rightarrow (m#x = 0 \Rightarrow m#y = 0)

Composition and Full Realizability

If two composable specifications $S1 = (X1 \triangleright Y1)$: Q1 and $S2 = (X2 \triangleright Y2)$: Q2

- are fully realizable
- then their composition $S1\times S2$ with assertion Q1 \wedge Q2 is fully realizable

If assertions W1 and W2 are weaker than fully realizable: $Q1 \Rightarrow W1$, $Q2 \Rightarrow W2$

Then $W1 \wedge W2$ is generally a weaker assertion (correct but not necessary complete)

 $(Q1 \wedge Q2) \Rightarrow (W1 \wedge W2)$

Composing Moore machines

We compose Moore machines (Δ_k, Λ_k) : $(X_k \triangleright Y_k)$ for $k = 1, 2$, where $X_1 \cap X_2 = \emptyset$, $Y_1 \cap Y_2 = \emptyset$ by parallel composition to a Moore machine

 $((\Delta_1, \Lambda_1)\mathbf{X}(\Delta_2, \Lambda_2):(\mathsf{X} \blacktriangleright \mathsf{Y}))$ where $X = (X_1 \cup X_2) \cup Y$, $Y = Y_1 \cup Y_2$ defined by

$$
(\Delta, \Lambda) = ((\Delta_1, \Lambda_1) \times (\Delta_2, \Lambda_2))
$$

where for

$$
\Sigma = (\Sigma_1 \times \Sigma_2)
$$

$$
\Lambda = \{(\sigma_1, \sigma_2): \sigma_1 \in \Sigma_1 \land \sigma_2 \in \Sigma_2\}
$$

 $\Delta((\sigma_1, \sigma_2), x) = \{((\tau_1, \tau_2), y): (\tau_1, y|Y_1) \in \Delta_1(\sigma_1, x|X_1) \wedge (\tau_2, y|Y_2) \in \Delta_2(\sigma_2, x|X_2) \}$

For composable Moore machines (Δ_k, Δ_k) : $(X_k \triangleright Y_k)$ for $k = 1, 2$, we get

 $[[(\Delta_1, \Lambda_1)\mathbf{X}(\Delta_2, \Lambda_2)]] = [[(\Delta_1, \Lambda_1)]\mathbf{X}[[(\Delta_2, \Lambda_2)]]$

For every fully realizable interface predicate $Q::(X\triangleright Y)$ there exists a Moore machine such that

 (Δ, Λ) ::(X \blacktriangleright Y) with Q = $[[(\Delta, \Lambda)]]$

For a Moore machine (Δ, Λ) :: $(X \triangleright Y)$ the interface predicate $[[(\Delta, \Lambda)]]$:: $(X \triangleright Y)$ is

- fully realizable and
- the set of fully realizable interface predicates forms a denotational semantics for systems implemented by Moore machines.

Design Framework

Semantic driven system development

- Encapsulation
	- \Diamond Form architectural elements with interfaces that encapsulate the access by interfaces
- Information hiding
	- ◊ Hide implementation details not needed to understand the effect on the context
- Functional abstraction: Model the interface including interface behavior
- Composition
	- ◊ Define the interface behavior of composed systems from the interface behavior of the components
- Interface refinement
	- ◊ Make specifications more detailed
- Modularity (generalization of Liskov's substitution principle)
	- \diamond Guarantee that refinement of specifications of components leads to refinement of specifications of composed systems

Layered Architectures

Layers in Layered Architectures

- Layered architectures have many advantages.
- In many applications, therefore layered architectures are applied.

 $L = (x: \vec{X}, b: \vec{B} \blacktriangleright y: \vec{Y}, a: \vec{A})$: R(a, b) $\Rightarrow Q(x, y)$

Forming Layered Architectures

Proof

We compose the two layers to a system L

L
\n= Hide
$$
x_1 \in : \vec{X}_1
$$
, $y_1: \vec{Y}_1: L_1 \times L_2$
\n= $(x_2: \vec{X}_2, b_1: \vec{B}_1 \blacktriangleright y_2: \vec{Y}_2, a_1: \vec{A}_1): \exists x_1 \in : \vec{X}_1, y_1: \vec{Y}_1:$
\n $(R_1(a_1, b_1) \Rightarrow Q_1(x_1, y_1)) \land (R_2(x_1, y_1) \Rightarrow Q_2(x_2, y_2))$
\nIf $Q_1(x_1, y_1) \Rightarrow R_2(x_1, y_1)$ holds we conclude
\n $L = (x_2: \vec{X}_2, b_1: \vec{B}_1 \blacktriangleright y_2: \vec{Y}_2, a_1: \vec{A}_1): (R_1(a_1, b_1) \Rightarrow Q_2(x_2, y_2))$

System L which is the result of composing the two layers is a layer again with the provided service of layer L_2 and the requested service of layer L_1 .

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy **TITT**

Forming Layered Architectures

Concluding Remarks

- Expressive power and flexibility
	- \Diamond In principle all kinds of behavior can be specified
	- ◊ Specifications can be noncausal, weakly or strongly causal, realizable or fully realizable
- Specification, composition, verification and refinement by a calculus that is
	- ◊ Sound
	- ◊ Relatively complete
	- ◊ Making specification f.r. (often s.c. is enough) is sufficient for all proofs
- Methodological extensions
	- ◊ Assumption/Commitment specifications
	- ◊ Time free specifications
- Architecture design by specifications
- Further Extensions
	- ◊ Infinite networks (recursive definitions of networks)
	- ◊ Dynamic systems
	- ◊ Probability

Topics for future research

- A tool for proving in the calculus
- A programming language for implementation
- Probabilities for interface behavior
- A time free version for non-time-sensitive interface specifications ◊ Ambiguous operators

