Interaction, Concurrency, Nondeterminism, Time,
Composition, Distribution, Abstraction

An Interface Centric Approach

Practical and Theoretical Consequences

Manfred Broy

TUTI

Technische Universitat Minchen
Institut fir Informatik
D-80290 Munich, Germany

[t

Topics of Concurrency

Theoretical

Nondeterminism, concurrency
¢ Parallel operators (parallel or)
¢ Ambiguity

State machines
Computability

¢ Algorithms

¢ Models of computability

O Time

O Infinite computations

¢ Unbounded nondeterminism
Denotational semantics

Fixpoint theory

Practical

Nondeterminism and ambiguity
Abstraction: Interface behavior

Modularity

¢ Encapsulation, information hiding,
interface behavior

Real time

Graphical models

Specification

Distribution and architecture

¢ Composition

Verification

Missing programming languages

Architectures: Interface and Composition, Trento, October 2023

Manfred Broy

nm |

The Two Basic Models

State based models of concurrency

* Influenced by von Neumann
architecture: shared state

* Interleaving concurrency
O implicit
¢ nondeterminism
O deadlock
* State based assertion techniques
¢ ghost variables,
O stuttering
¢ prophecy variables
* Composition
O fairness
O intensional

History based models of concurrency
* Data Flow

* Infinite computations

¢ streams and histories

Explicit Concurrency

Safety and liveness

* Composition

¢ compositionality

O extensionality principle
Distribution

Abstraction: modularity

¢ information hiding/encapsulation
Components

Architectures: Interface and Composition, Trento, October 2023

Manfred Broy m |

General Observations

* Numerous models

¢ Petri Nets, Data Flow, TLA , CSP, CCS, B, Unity, Rely/Guarantee, State Charts, Esterel, ...

Missing studies of the sufficient comparisons of different approaches
Theoretical consequences not sufficiently investigated

¢ How does the notion of algorithm generalize to concurrency and vice versa
¢ What about computability when considering nondeterminism, concurrency and/or time

Practice versus theory

¢ In theoretical approaches practical consequences often not sufficiently taken care of
¢ In practical approaches theoretical consequences often not sufficiently taken care of

* Programming languages based on the Neumann architectures

O Shared state

A lot of concepts on low level implementation issues
¢ Operating systems, scheduling, bus systems

Architectures: Interface and Composition, Trento, October 2023

Manfred Broy m |

Practical challenges

* System specification * Levels of abstraction
¢ At what abstraction level? ¢ Platform independent models of
¢ Specifying concurrent algorithms or concurrent systems
functional behavior of distributed systems O Platform specific models of concurrent
* System composition systems
 Composition of system specifications * Distribution
0 Compositionality * Safety and liveness
o Modularity ¢ Fairness
O Compositional verification * Design
* Cyber physical systems ¢ Architecture
¢ Modeling physical devices * Interface specification
* Real time 0 Multiservice systems
& Time out O Feature interaction between services
O Delay O Assumption/commitment
¢ Urgency O Provided and required services
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI |
Interface Based Modelling Theory
* Interface Model XZ:TZl x3:T3”y1:T'1
¢ Syntactic)
O Behavioral il | System ‘yz—;'
* Architecture Model .
& Composition T
O Feedback y4:T'Hx5-T5
* Expressive power ”j “HVV
¢ Data flow il | Ry u:Wi | F,
O Time flow i W,
* System specification 2w | frorwe 2w faeiwe
* System composition F [vaivs
* System Verification [
* Operational models vau

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI |

Discrete systems:

the modeling theory in a nutshell

Sets of typed channels
X={x1:Ty, x2:T2, ..}
Y={y1:S1,y2:52, ..}

syntactic interface
X »Y)

data stream of type T
STREAM T = { N\{0} — T*}

valuation of channel set X
X = {X — STREAM[T]}

interface behavior for syn. interface (X»Y)

x2:T21 x3:T3l]y1:

T

Xy : Ty System
—_—

Y, i T,
———
—

Xq: Ty

————

Y4:T'4l ‘Xs:Ts

Forms of models
» mathematical

y3: T3

interface predicates logical
QXxY 5B + graphical
represented by interface assertions:
logical formula with channel names
as variables for streams
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 7
Example: Interface Specification - Data flow
MIX = (x, z: Tstr M» y: Tstr M): v m € M: m#x+m#z = m#y textual
MIX
inx, z:. ISTRM
outy: TSTRM by tableau
v m e M: m#x+m#z = mi#ty
x:M l lZ:M
MIX graphical
vV m e M: m#x+m#z = m#ty
y:M l
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy Tum | 8

Streams

Mxlo = M* U Mo

Finite Streams: M*¥ =, y{teN:1<t<n}->M
Infinite Streams: Me =N — M
Data type of streams over set M: Str M
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI | 9

Timed Streams: lllustration: Time Flow and Data Flow

X abb% c aabcc a iaaaibcbi b ccc

>
»

ti2 3 4 05 060 7 8 1 9 1100 1120

Timed stream x={abb){y(@a)bccy@d@aaybchbyb){ccc)..)
Time abstraction X ={(@bbcaabccaaaabcbbccc..)

Timing X=(310231033103..)

Elementsattime @x=¢(111244555688899910121212 ...)

X(t) = #x(t) timing of x by the stream X: N, —» N
n@x time of nth element in x

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 10

Timed Streams

Timed streams (M*)® =N, — M*
Finite timed streams (M*)* =u, .y M € N.: m < n} —» M¥)

xjt:{neN:1=<n<st} > M*
1<n<t= (xtn) = x(n)

#x number of elements in x
M#x number of elements in x that are in set M
m#X = {m}#X
Type of all timed streams: Tstr M

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 11

Histories of Timed and Untimed Streams

Given a set of typed channel names
B X={c1:Ty, e Ci T}

by X we denote channel histories given by families of timed streams,
one timed stream for each of the channels:

X = (X — (M¥)°)
Finite timed histories

Xin = (X — (M¥)%)

Stream histories

X = (X > Mxlo)

Xin = (X — M*)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 12

Syntactic interfaces

Given channel sets X and Y, a syntactic interface is denoted by

(X»Y)
XziTzl x3:T3lIy1:T’1
X; i Ty System Y21 T
—
Xq: Ty
—
ys: T3
Ya i T’4l ’ Xs 1 Ts
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 13

Interface specification predicates and assertions

XziTzl x3:T3lIy1:T’1

Q:XXY_)]B% Xg i Ty A Y, T
Q=(XrY):A A
ys: T

where A is an assertion with free identifiers from X and Y y“:T"‘l ‘X T

@(x, z: Tstr M» y: Tstr M):(¥ m € M: m#x+m#z = m#
MIX(X, z, y) = Vm € M: m#x+ =

predicate (let M be a nonempty set/type) assertion

We write Q::(X»Y) to express that Q is an interface predicate for the syntactic
interface (X»Y)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 14

Delay and time out

FOW = (y: Tstr M»z: Tstr M): v m € M: m#z = m#y

Delay: d e N:d =1
FOWD = (y: Tstr M»z: Tstr M): Vv m € M: m#z = m#y

AV te N: m#(ylt) = m#(zlt+d)
Timeout: U e N:u =1
FOWTO = (y: Tstr M»z: Tstr M): v m € M: m#z = m#y

AVt e N: m#(zlt+u) = m#(ylt))
Delay and time out:
FOWD = (y: Tstr M»z: Tstr M): vV m € M: m#z = m#y

AVt e N: m#(zlt+u) = m#(ylt) = m#(zlit+d)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 15

Refinement of interface predicates

An interface predicate Q"::(X»Y)
is called refinement of an interface predicate Q::(X»Y) if

Q=Q

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 16

Hiding

Hiding

Given a specification
Q=(XrY):A
where A is an assertion with free identifiers from Xand Yand Y c Y

(Hide Y": Q)::(X»Y\Y")
for x € X, y' e W
(Hide Y: Q)(x, y) = 3y € Y: Q(X, y) A y” = y|(Y\Y")

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI |

18

Causality

Strongly Causal Interface Predicates

Q::(X»Y)
is strongly causal if for all x, z X, y € \7, vteN

x(t=z|t AQ(x,y) = 3Yy'e Y: Q(z, y) Aylt+l = y'|t+1

For every interface predicate Q::(X»Y)
there exists a weakest refinement Q° of Q that is strongly causal

Note: If Q(x, y) = false for allx € X, y € Y then Q is strongly causal

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI |

20

Example: Interface Specification: Strong Causality

TRA = (x: Tstr M » y: Tstr M):
vme M:(m#x =0 = m#y = 0) A (M#X = 0 = m#y > 0) nucleus

TRA(X, Y)
= logical reasoning
M#X = oo = Jt e N: m#ylt > 0
TRA®(X, y)
— strong causality
VteN: m#(xit) = 0 = m#(ylt+1) =0

— logical reasoning
M#X = 0o = It € N: m#(xit) > 0 A m#(ylt) = 0 A m#(ylt+1) > 0

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 21

Specification nuclei

In a specification we may give just a nucleus
MIX = (x, z: Tstr M» y: Tstr M): v m € M: m#x+m#z = m#y

This is an assertion that gives the key characteristic from which further
properties are deduced in refinement steps typically be the step to adding strong
causality —

going from MIX to MIX®,

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 22

Example: Interface Specification: Strong Causality

MIX = (X, z: Tstr Mpy: Tstr M): Vv m € M: m#x+m#z = m#y
nucleus
MIXO(x, y) = Vm € M: m#x+m#z = m#y
AVt e N: m#E(xIt)+m#(zlt) = m#(ylt+1)

FOW = (y: Tstr M»x: Tstr M): Vv m € M: m#x = m#y nucleus

FOWO(x, y) = Vm e M: m#x = m#y AVt e N: m#(ylt) > m#(xit+1)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 23

Input enabledness

If Q::(X»Y) # false is strongly causal then Q is input enabled

since there exists z e X and y € Y such that Q(x, y)
for all x e X

x|0=210 AQ(z, y) =3I y'e Y: Q(x, y) A yll =yl

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 24

Realizability

Strongly Causal Functions

—

f: X—Y
is strongly causal if fort e N
xJt =z|t = f(xX)|t+1 = f(2) | t+1
Then we write SC[f]

Every strongly causal f has a unique fixpoint (Proof: Banach’s Fixpoint Theorem)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 26

Fully Realizable Predicates

Q::(X»Y)
Real[Q] = {f ¢ X — Y: SC[f] A ¥V x € X: Q(x, f(x))}

Real[Q] denotes the set of realizations of Q
Q is realizable if 3 f € Real[Q]

Q is fully realizable if Q is realizable and
Q(x,y) =3f e Real[Q]: y = f(X)

Every realization f € Real[Q] defines a strategy to compute y = f(x) given x
such that Q(x, y) holds

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 27

Fully Realizable Predicates

For every predicate Q::(X»Y) there exists a weakest refinement Q® of Q
Q®(x,y) = 3 f € Real[Q]: y = f(x)
Q® is fully realizable if Q is realizable

Q® = false if Q is not realizable

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 28

Example: Interface Specification: Strong Realizability

INF = (x: Tstr M » y: Tstr M): #X =00 = #y =0 nucleus

INF is not strongly causal, realizable, but not fully realizable

INF®(x, y)
= full realizability
#y =0
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 29
Example: Interface Specification: Strong Realizability
REP = (x: Tstr M » y: Tstr M): nucleus

(X< o= #y=0) A (#X =0 = #y = o)
REP is strongly causal

REP®(X, y)
= realizability
false

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 30

Example: Interface Specification: full realizability

NoID = ({x: Tstr M} » {y: Tstr M}): x # y nucleus
NoID is strongly causal strong causality
NoID®(x, y)

= full realizability
false

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI | 31

A specification that is realizable, strongly causal but not fully realizable

DEMO = (x: Tstr M»y: Tstr M): x # y vy = ¢ where ¢ is the stream with #¢ = 0

DEMO is strongly causal
Xjt=zjtA(X¥yvy=¢)=>3aYy'e Y: z#+y vy =¢)aylt+l = y'|t+1

DEMO is realizable
f(x) =¢

but not fully realizable: ¢ is the only fixpoint of DEMO:

DEMO(eg, y) holds for all y withy # ¢

There is no realization f with f(¢) # ¢ since f has a unique fixpoint z where
DEMO(z, f(z)) and z = f(z). Since DEMO(z, z) implies z = ¢ we getf(e) =¢

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 32

Assumptions and Commitments

Assumption/Commitment

How to deal with specifications, that are not realizable

Example: An interactive queue

Queue
in x: Str Data | {req}

out y: Str Data
Data©y = Data©x
#y = reg#x

Here MOx is the sub-stream of x consisting of the elements in set M
X C y stands for stream x is prefix of stream y

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI |

Inconsistence with strong causality: not input enabled

However, if we require
Data©y = Data©x

#y = req#Xx
then there exist input streams x such that there does not exist some output y
such that Queue(x, y) - Example: X = (req)

We define the assertion Asu(x) that has to hold for x:
Asu(x) = V z € Str Data | {req}: z = x = req#z < Data#z

QueueAC(x, y) = (Asu(x) = Queue(x, y))

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI | 35

Interfaces with assumptions

For the syntactic interface (X»Y) we may include

* an assumption Asu(y, x) which is a specification of the /nverse interface (Y »X)
and defines properties of the context

* a commitment Com(x, y) which is a specification of the behavior the syntactic
interface (X»Y) as long as the assumption is fulfilled.

this leads to the specification
Asu(y, x) = Com(x, y)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 36

Example: System interface specification

x:T
A transmission component TMCWA
TMCWA

in x: TstrM

out y: Tstr M

assume V t e N: #xlt < 1+#ydt
commit V m € M: m#x = m#ty

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 37

Operational Semantics:

Moore machines

Moore machines

For syntactic interface (X » Y), a generalized nondeterministic (total) Moore
machine with state space X is a pair (A, A) where A is a total state transition
function

A (2 % Xin) > 0(Z x Yin){2}

and A c X is a nonempty set of initial states and for a e 7(ﬁn, b eT(ﬁn, c,0€ X

(o, b) € Ao, a)
the output b does not depend on the input a but only on the state .
Formally defined, there exists an output function:

E X > o (Yim){I}
such that
Voel ae X E(o)={b eYq: 30 € X (o', b) € Ao, a)}

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI | 39

Moore machines compute interface behavior

We write (A, A)::(X»Y) to express that (A, A) is the Moore machine that operates
over the syntactic interface (X»Y).

(A, A)::(X»Y) is called deterministic if the for all states ¢ € X, histories a e X
the sets A and A(o, a) are one-element.

(A, A)::(X»Y) calculates for an input history x e X an output history y € 7, if there
exist states 65 € Aand oy € Zforallt e N and

(ot+1, Y(1)) € Aoy, X(1))
Then the pair (x, y) of histories is called a behavioral instance of (A, A)::(X»Y)

States are considered as local, as hidden, while input and output is observable.

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 40

Moore machines compute infertace behavior

For each history x e X a Moore machine (A, A)::(X»Y) computes an interface
predicate

A, ALXxY > B
defined by

(A, AlIx,y)=3oc € (N> X): 09 e AA V1t e N: (o1, Y(I) € Aoy, X(1))

(A, A')::(X»Y) is called (extensional) refinement
of Moore machine (A, A)::(X»Y) if

(A, AT = [IA, A]]

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 41

Functional Moore machines

For every Moore machine (A, A)::(X»Y) its associated interface predicate
[[A, All::(X»Y)
is fully realizable and thus also strongly causal.

Every strongly causal function f: X — Y defines a deterministic Moore machine
(Apxryy {f3)::(X»Y)
where %,y is the set of strongly causal functions in X — Y and
Aporvy: (Bporyy x Xin) = 9 Sooryy x Yen)\{ D}
is defined for histories x e X, y € Y and strongly causal functions f, f': X Y by
AXPY)(f, @) = {(f, b)} where for all x e X: f((a)"x) = (b)"f'(x)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 42

Deterministic Moore machines

Define for Moore machine (A, A)::(X»Y) by DET(A, A) the set of deterministic
Moore machines that are refinements of (A, A); then

[A, Allx, y) = 3 (A, A') € DET(A, A): [[A', AT (X, Y)

For every Moore machine (A, A)::(X»Y) its set of realizations f: X — Y of [A, Al
is equal to the set of strongly causal functions

{f+ X - Y:3 (A, A') € DET(A, A): ¥ X: [[A, A(X, (X))}

For every Moore machine (A, A)::(X»Y) its interface predicate [[A, A]]::(X»Y) is
the disjunction of the associated interface predicates of all its deterministic
refinements.

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 43

Feature Interaction

Projection

Given a specification

xX»Y): Q
where X' X, Y c Y

a subservice QT(X'»Y’) is defined
by projection

QEX YN, y)=3xeXye Y QX y) AxX =x|X Ay =y|Y

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI |

Feature interaction

Can we decompose a system

X
1 ak 1
Q
into
| l
Y X1 %2
Q1 Q2
Y, Y,

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI |

Feature Interaction

Let X = X;UX,, Y = Y UY,, where the sets X;, X,, Y4, and Y, are pairwise disjoint

The subservices Q; = Q|(X;»Y;) and Q, = Q|(X,»Y,) of service Q are free of
feature interactions if

Q% y) = (Qu(x[Xy, yIY1) A QaX[Xy, yIY))

X1 XZ
Q1 Q2
Y1 Y2
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 47

Distribution and Architecture
Composition

Composition

We compose systems syntactically and semantically by their interfaces

X: T, X3: T3 Iy::, . T’3
A 4 A 4
Xl:Tl’Cl yB:TB‘ C2
Xg - Tg
A A
Ye- T’s X6 - T6 Y7 - T’7 X7 . T7
A A
Ya T
G YaiTs
—
Xg . T4
Xs5 . T5 IY5 . T’5
v
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TI.ITI | 49

Syntactic composability

Specifications S, = (X »Y,):Q, where k = 1, 2, are composable if

XlﬂXZ =
YlﬂYz =

To make life simple we usually assume in addition:

XlﬁY1 =
XzﬂYz =

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy Tum | 50

Composition Diagrams

x1 x2
S1XS2 z1 z2
v
S1 >< S2
V14 z2 z1 y2
S1 S2
in x1,z1: M in x2,z22: M
out yl,z2: M out y2,z1: M
Ql Q2
S1XS2
in x1,x2: M
outyl, z2,y2,z1: M
Q1 A Q2
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy Tl.rn | 51

Example: Interface Specification: Strong Causality and Composition

MIX = (X, z: Tstr Mpy: Tstr M): Vv m € M: m#x+m#z = m#y

FOW = (y: Tstr M»z: Tstr M): v m € M: m#z = m#y

(MIX(X, z, y) A FOW(y, 2)) = V m € M: m#x+m#y = m#y

Architectures: Interface and Composition, Trento, October 2023

Manfred Broy m | 52

Composition Diagrams

x1 x2
S1XS2 z1 z2
v 3
S1 >< S2
V14 z2 z1) y2
S1 S2
in x1,z1: M in x2,z22: M
out yl,z2: M out y2,z1: M
Ql Q2
S1XS2
in x1,x2: M
outyl, z2,y2,z1: M
Q1® A Q2%
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy Tl.rn | 53

Example: Interface Specification: Strong Causality and Composition

MIX®(x, y) = V m € M: m#x+m#z = m#y
AVt e N: m#E(xIt)+m#(zit) = m#(ylt+1)

FOW®(y, z) =V m e M: m#z = m#y AV t e N: m#(ylt) > m#(zit+1)
(MIX(X, z, y) A FOW(y, 2)) = V m € M: m#x+m#y = m#y

(MIX®(X, z, y) A FOW®(y, 2)) = V m € M: m#x+m#y = m#y
AV t e N: m#(x{t)+m#(ylt) = m#(ylt+1)

= (m#x = 0 = m#y = 0)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 54

Composition and Full Realizability

If two composable specifications S1 = (X1»Y1): Q1 and S2 = (X2»Y2): Q2

* are fully realizable

* then their composition S1XS2 with assertion Q1AQ2 is fully realizable

If assertions W1 and W2 are weaker than fully realizable: Q1 = W1, Q2 = W2
Then W1 A W2 is generally a weaker assertion (correct but not necessary complete)

(Q1 A Q2) = (W1 A W2)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI | 55

Composing Moore machines

We compose Moore machines (A, Ay):(X»Yy) for k =1, 2, where X;nX, = &,
YinY, = O by parallel composition to a Moore machine

((Aq, A1) X (Ag, Ag)::(X > Y))
where X = (X;UXo)\Y, Y =Y,UY, defined by

(A, A) = ((A1, Aq) x (Az, A))
where for
z= (21 X 22)

A ={(o4, 02): 64 € Z4 A0y € Xy}

A((o1, 62), X) = {((t1, 12), ¥): (t1, Y[Y1) € Aq(o1, X|X1) A (12, Y[Y2) € Ax(o, X[X5) }

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 56

Composing Moore machines

For composable Moore machines (A, Ay)::(X»Y,) fork =1, 2, we get

[(A1, A1) X (Ay AN = [[(Ag, AIX (A2, A)]]

For every fully realizable interface predicate Q::(X»Y) there exists a Moore
machine such that

(A, A)::(X»Y) with Q = [[(A, A)]]

For a Moore machine (A, A)::(X»Y) the interface predicate [[(A, A)]] ::(X»Y) is
* fully realizable and

* the set of fully realizable interface predicates forms a denotational semantics
for systems implemented by Moore machines.

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI | 57

Design Framework

Semantic driven system development

* Encapsulation

¢ Form architectural elements with interfaces that encapsulate the access by interfaces
Information hiding

O Hide implementation details not needed to understand the effect on the context
Functional abstraction: Model the interface including interface behavior

* Composition

¢ Define the interface behavior of composed systems from the interface behavior of the
components

Interface refinement
& Make specifications more detailed

Modularity (generalization of Liskov's substitution principle)

¢ Guarantee that refinement of specifications of components leads to refinement of
specifications of composed systems

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 58

Layered Architectures

Layers in Layered Architectures

* Layered architectures have many advantages.
* In many applications, therefore layered architectures are applied.

L = (x: Y, b: §>y: 7, a: K): R(a, b) = Q(x, y)

Let the interface behavior
S = (x: Y»y: 7): Q(x, y)
denote the provided service and
5 . a: A b: B
W = (a: A»b: B): R(a, b)
denote the required service.

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 60

Forming Layered Architectures

We have two layers (k = 1, 2)

L = (X Xio bt Be®yic Vi @ At Ri(@i bi) = QX Y)
that fit syntactically together, if
X]_ = A2 and Yl = Bz,

and semantically if the provided service X, v Y

S = (X3t X1y Y1) Qu(xy, Y1) e o | e

. - Layer L 2
of the lower layer L, is a refinement of o Ay by: B,
the requested service o
— — Xg: X it Y

Wy= (@i AP byt By): Ry(ay, by) ST - —
of the upper layer L, which means
(note that X; = B, and Y, = A)) | |

Q1(x1, Y1) = Ra(x4, 1)

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI | 61

Proof

We compose the two layers to a system L
L

= Hide X1 € :21, V1. 71: L1 X L2
= (Xo: iz, bq: §1 >yo: \72, ai: K1): x4 e 21, Yq: \71:

(R1(aq, b1) = Qq(X4, y1)) A (Ra(X4, Y1) = Qa(X2, ¥2))
If Qq(x4, Y1) = Ra(x4, y4) holds we conclude

L = (Xp: Xp, by: ByPya: Yo, ag: Ag): (Ry(aq, by) = Qu(Xz, ¥2))

System L which is the result of composing the two layers is a layer again with
the provided service of layer L, and the requested service of layer L.

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy m | 62

Forming Layered Architectures

If the layers fit together, we get a layered architecture

VAN
Li=(Xi: Xy Bi:Bi™ Vit Yis @kiAk): R(@k b) = Qu(Xis Y) ol Ko H oi Yo
that fit syntactically together, if LA : % L
ayer L,
Xi = Agg and Yy = Byyy, o] s
and semantically if the provided service n
Sk = (Xt Xk® Vi Yi): QX Yk)
of lower layer L, is a refinement of xzzxzﬂ ﬁyz:vz
the requested service Layer L,
Wir1= (@k+17 Akt ® Brat? Bir1): Ro@ks1s Diat) e b
. alo il dlo Ugl
of the upper layer L, which means Er=—
Q(Xk, Yk) = Rir1(Xes Vi)
Ay by: By
' L
Architectures: Interface and Composition, Trento, October 2023 Manfred Broy 1l |

System delivery

X1: Ty

Gy G

architecture
verification U
ys:T's

ks < C,®C,®C;

Verification Ry = C; R, = C, Ry = G

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy Tl.m |

The Two Basic Models

State based models of concurrency

* Influenced by von Neumann
architecture: shared state

* Interleaving concurrency
O implicit
O nondeterminism
¢ deadlock
* State based assertion techniques
¢ ghost variables,
¢ stuttering
¢ prophecy variables
* Composition
O fairness
O intensional

History based models of concurrency
* Data Flow

* Infinite computations
O streams and histories

Explicit Concurrency
Safety and liveness
* Composition

¢ compositionality

O extensionality principle
Distribution

Abstraction: modularity
¢ information hiding/encapsulation

Components

Architectures: Interface and Composition, Trento, October 2023

nm | 65

Manfred Broy

Concluding Remarks

* Expressive power and flexibility

¢ In principle all kinds of behavior can be

specified

& Specifications can be noncausal, weakly

or strongly causal, realizable or fully
realizable
* Specification, composition,
verification and refinement by a
calculus that is
¢ Sound
¢ Relatively complete

& Making specification f.r. (often s.c. is
enough) is sufficient for all proofs

* Methodological extensions
O Assumption/Commitment specifications
O Time free specifications
* Architecture design by specifications

* Further Extensions

¢ Infinite networks (recursive definitions of
networks)

¢ Dynamic systems
O Probability

Architectures: Interface and Composition, Trento, October 2023

Manfred Broy m | 66

Topics for future research

A tool for proving in the calculus

A programming language for implementation

Probabilities for interface behavior

A time free version for non-time-sensitive interface specifications
¢ Ambiguous operators

Architectures: Interface and Composition, Trento, October 2023 Manfred Broy TuTI |

67

