Compositional reasoning over asynchronous systems: a temporal logic-based approach

Alberto Bombardelli Stefano Tonetta

Fondazione Bruno Kessler

Introduction

Interface Component

- Each component has input and output ports
- Ports of different components can be connected together
- Composition is potentially hierarchical

Interface Component

Leaf components: $\mathcal{M} = \langle \mathcal{V}^{I}, \mathcal{V}^{O}, \mathcal{I}, \mathcal{T}, \mathcal{F} \rangle$ Represented by Interface Transition Systems

- Each component has input and output ports
- Ports of different components can be connected together
- Composition is potentially hierarchical

Composite components:

 $\mathcal{M} = \mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_n$

Represented by the composition of components (both composite and leaf) where \otimes is the composition operator

Contract based design with OCRA

- Consider for each component C a contract $\langle A,G\rangle:$ couple of assumption and guarantee LTL properties
- Defines a notion of refinement: a component C is refined by its sub-components $Sub(C) = \{C_1, \dots, C_n\}$ iff
 - $Impl: (\bigwedge_{C_i \in Sub(C)} (A_i \to G_i)) \to (A \to G)$
 - **2** Env: For all $C_i \in Sub(C)$: $(\bigwedge_{C_j \in Sub(C) \setminus \{C_i\}} (A_j \to G_j)) \to (A \to A_i)$
 - **③** For each leaf component of the hierarchy: $C_{leaf} \models A_{leaf} \rightarrow G_{leaf}$

Contract based design with OCRA

- Consider for each component C a contract $\langle A,G\rangle:$ couple of assumption and guarantee LTL properties
- Defines a notion of refinement: a component C is refined by its sub-components $Sub(C)=\{C_1,\ldots C_n\}$ iff

 - **2** Env: For all $C_i \in Sub(C)$: $(\bigwedge_{C_j \in Sub(C) \setminus \{C_i\}} (A_j \to G_j)) \to (A \to A_i)$
 - **③** For each leaf component of the hierarchy: $C_{leaf} \models A_{leaf} \rightarrow G_{leaf}$

Asynchronous composition

- What if components runs asynchronously? Interleaving execution of components.
- We introduce a special boolean variable run_i that is true iff C_i is running.
- We introduce the scheduling constraint α .
- We expect each component C_i to run infinitely often (encoded inside α).
- Output variables (\mathcal{V}_i^O) do not change when C_i is not running

$$\begin{split} \varphi_{c1} &:= \mathbf{G}(rec \rightarrow o_1' = i \land \\ & (try_1 \land o_1' = o_1) \mathbf{U}send_1) \\ \varphi_{c2} &:= \mathbf{G}(rec_2 \rightarrow o' = i_2 \land \mathbf{X}send_2) \\ \varphi_{c3} &:= \mathbf{G}(try \rightarrow o_f' = i_3 \land \mathbf{X}fail) \\ \varphi &:= \mathbf{G}(rec \land i = v \rightarrow \\ & \mathbf{F}(send \land o = v \lor fail \land o_f = v)) \\ \alpha &:= \mathbf{G}(i_1 \rightarrow run_1) \land \\ & \mathbf{G}(send_1 \rightarrow run_2) \land \\ & \mathbf{G}(\mathbf{H}_{\leq p}try_1 \rightarrow run_3) \end{split}$$

For each trace π_g of the composition, we consider the projected trace to the local component π_i :

We define a rewriting \mathcal{R}^\ast such that

$$\pi_{local} \models \varphi_i \Leftrightarrow \pi_{global} \models \mathcal{R}^*(\varphi_i)$$

 \mathcal{R}

We define a rewriting \mathcal{R}^\ast such that

$$\pi_{local} \models \varphi_i \Leftrightarrow \pi_{global} \models \mathcal{R}^*(\varphi_i)$$

it assumes to be on a state in which run_i holds

 $a: \mathcal{R}(a) := a$ $\neg: \mathcal{R}(\neg \psi) := \neg \mathcal{R}(\psi)$ $\forall: \mathcal{R}(\psi_1 \lor \psi_2) := \mathcal{R}(\psi_1) \lor \mathcal{R}(\psi_2)$ $X: \mathcal{R}(\mathbf{X}\psi) := \mathbf{X}(run_i \mathbf{R}(\neg run_i \lor \mathcal{R}(\psi)))$ $U: \mathcal{R}(\psi_1 \mathbf{U}\psi_2) := (\neg run_i \lor \mathcal{R}(\psi_1)) \mathbf{U}(run_i \land \mathcal{R}(\psi_2))$

 \mathcal{R}

We define a rewriting \mathcal{R}^{\ast} such that

$$\pi_{local} \models \varphi_i \Leftrightarrow \pi_{global} \models \mathcal{R}^*(\varphi_i)$$

it assumes to be on a state in which run_i holds

a: $\mathcal{R}(a) := a$ $\neg: \mathcal{R}(\neg \psi) := \neg \mathcal{R}(\psi)$ $\lor: \mathcal{R}(\psi_1 \lor \psi_2) := \mathcal{R}(\psi_1) \lor \mathcal{R}(\psi_2)$ **X**: $\mathcal{R}(\mathbf{X}\psi) := \mathbf{X}(run_i\mathbf{R}(\neg run_i \lor \mathcal{R}(\psi)))$ **U**: $\mathcal{R}(\psi_1\mathbf{U}\psi_2) := (\neg run_i \lor \mathcal{R}(\psi_1))\mathbf{U}(run_i \land \mathcal{R}(\psi_2))$ **Y**: $\mathcal{R}(\mathbf{Y}\psi) := \mathbf{Y}(\neg run_i\mathbf{S}(run_i \land \mathcal{R}(\psi)))$ **S**: $\mathcal{R}(\psi_1\mathbf{S}\psi_2) := (\neg run_i \lor \mathcal{R}(\psi_1))\mathbf{S}(run_i \land \mathcal{R}(\psi_2))$ • ...

 \mathcal{R}

We define a rewriting \mathcal{R}^{\ast} such that

$$\pi_{local} \models \varphi_i \Leftrightarrow \pi_{global} \models \mathcal{R}^*(\varphi_i)$$

it assumes to be on a state in which run_i holds

a:
$$\mathcal{R}(a) := a$$

 \neg : $\mathcal{R}(\neg\psi) := \neg \mathcal{R}(\psi)$
 \lor : $\mathcal{R}(\psi_1 \lor \psi_2) := \mathcal{R}(\psi_1) \lor \mathcal{R}(\psi_2)$
X: $\mathcal{R}(\mathbf{X}\psi) := \mathbf{X}(run_i \mathbf{R}(\neg run_i \lor \mathcal{R}(\psi)))$
U: $\mathcal{R}(\psi_1 \mathbf{U}\psi_2) := (\neg run_i \lor \mathcal{R}(\psi_1))\mathbf{U}(run_i \land \mathcal{R}(\psi_2))$
Y: $\mathcal{R}(\mathbf{Y}\psi) := \mathbf{Y}(\neg run_i \mathbf{S}(run_i \land \mathcal{R}(\psi)))$
S: $\mathcal{R}(\psi_1 \mathbf{S}\psi_2) := (\neg run_i \lor \mathcal{R}(\psi_1))\mathbf{S}(run_i \land \mathcal{R}(\psi_2))$
• ...
 \mathcal{R}^* "m

"maps" 0 to the first transition with run_i

$$\mathcal{R}^*(\varphi_i) = run_i \mathbf{R}(\neg run_i \lor \mathcal{R}(\varphi_i))$$

Optimization

Properties with input and outputs:

- Properties are over input and output variables
- output variables do not change when run_i does not holds

Optimization

Properties with input and outputs:

- Properties are over input and output variables
- output variables do not change when run_i does not holds

"Stutter tolerance" of φ :

Optimization

Properties with input and outputs:

- Properties are over input and output variables
- output variables do not change when run_i does not holds

"Stutter tolerance" of φ :

Applying stutter tolerance

- Stutter tolerant formulae are found syntactically (e.g. U, ovar)
- If sub-formula is "syntactically" stutter tolerant, then it is not necessary to apply rewriting to the current op:

•
$$\mathcal{R}^{\theta}(o1_{var} \mathbf{U}o2_{var}) = o1_{var} \mathbf{U}o2_{var}$$

- $\mathcal{R}^{\theta}(\mathbf{X}(o1_{var}\mathbf{U}o2_{var})) = \mathbf{X}(o1_{var}\mathbf{U}o2_{var})$
- Stutter tolerance also used for \mathcal{R}^\ast

Applying rewriting to contract refinement

Sync:

$$\begin{split} \mathsf{Impl} &: \bigwedge_{C_i \in Sub(C)} (A_i \to G_i) \to (A \to G) \\ \mathsf{Env} : \mathsf{For all } C_i \in Sub(C) : \bigwedge_{C_j \in Sub(C) \setminus \{C_i\}} (A_j \to G_j) \to (A \to A_i) \end{split}$$

Applying rewriting to contract refinement

Sync:

$$\begin{split} \mathsf{Impl} &: \bigwedge_{C_i \in Sub(C)} (A_i \to G_i) \to (A \to G) \\ \mathsf{Env} : \mathsf{For all } C_i \in Sub(C) : \bigwedge_{C_j \in Sub(C) \setminus \{C_i\}} (A_j \to G_j) \to (A \to A_i) \end{split}$$

Async:

$$\begin{split} \mathsf{Impl} &: \bigwedge_{C_i \in Sub(C)} (\mathcal{R}_i^*(A_i) \to \mathcal{R}_i^*(G_i)) \land \alpha \to (A \to G) \\ \mathsf{Env} &: \forall_{C_i \in Sub(C)} : \bigwedge_{C_j \in Sub(C) \backslash \{C_i\}} (\mathcal{R}_j^*(A_j) \to \mathcal{R}_j^*(G_j)) \land \alpha \to (A \to \mathcal{R}_i^*(A_i)) \end{split}$$

COMPASTA[IMBSA22, CEAS23]

- $\bullet~$ HW + SW components composition
- Finite Communication buffers

EVA[TACAS23]

- Tool for compositional verification of AUTOSAR (automotive) systems
- Contract refinement using OCRA as backend
- Event based scheduling:
 G(change(BrakeSens1) → XRBrakeCmd.run)
- Periodic scheduling: $\mathbf{F}_{\leq 1}CC.run \land \mathbf{G}(CC.run \rightarrow \mathbf{X}(\neg CC.run \mathbf{U}_{[}1,1]CC.run))$

- We want to permit finite scheduling of components
- sub-components might crash or the scheduler might not be fair.

- We want to permit finite scheduling of components
- sub-components might crash or the scheduler might not be fair.
- Composition locally possibly finite while system has infinite semantics.
- Local traces might have different length

 $\begin{aligned} \pi_1 &:= \bullet \to \bullet \to \bullet \\ \pi_2 &:= \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \dots \end{aligned} \qquad \begin{array}{l} \pi &= \pi_1 \times \pi_2 \times \pi_3 \\ \text{After end of local component, it stutters} \\ \pi_3 &:= \bullet \to \bullet \end{aligned}$

• Weak semantics (truncated LTL semantics of Eisner and FIsman)

- We want to permit finite scheduling of components
- sub-components might crash or the scheduler might not be fair.
- Composition locally possibly finite while system has infinite semantics.
- Local traces might have different length

 $\begin{aligned} \pi_1 &:= \bullet \to \bullet \to \bullet \\ \pi_2 &:= \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \dots \end{aligned} \qquad \begin{array}{l} \pi &= \pi_1 \times \pi_2 \times \pi_3 \\ \text{After end of local component, it stutters} \\ \pi_3 &:= \bullet \to \bullet \end{aligned}$

• Weak semantics (truncated LTL semantics of Eisner and FIsman)

Weak semantics (\models_{-}):

- $\bullet \ \pi,i\models_{-} v\Leftrightarrow i\geq |\pi| \ \mathrm{or} \ \pi,i\models v \quad \pi,i\models_{-} \neg\varphi\Leftrightarrow\pi,i\nvDash_{+}\varphi$
- $\pi_f = \{a\}, \{b\} \models_{-} \mathbf{G}(a \to b) \text{ and } \pi_f \models_{-} \mathbf{G}(b \to \mathbf{X} \neg a)$
- Semantics identical to standard LTL for infinite traces

- We want to permit finite scheduling of components
- sub-components might crash or the scheduler might not be fair.
- Composition locally possibly finite while system has infinite semantics.
- Local traces might have different length

 $\begin{aligned} \pi_1 &:= \bullet \to \bullet \to \bullet \\ \pi_2 &:= \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \dots \end{aligned} \qquad \begin{array}{l} \pi &= \pi_1 \times \pi_2 \times \pi_3 \\ \text{After end of local component, it stutters} \\ \pi_3 &:= \bullet \to \bullet \end{aligned}$

• Weak semantics (truncated LTL semantics of Eisner and FIsman)

Weak semantics (\models_{-}):

- $\bullet \ \pi,i\models_{-} v\Leftrightarrow i\geq |\pi| \ \mathrm{or} \ \pi,i\models v \quad \pi,i\models_{-} \neg\varphi\Leftrightarrow\pi,i\nvDash_{+}\varphi$
- $\pi_f = \{a\}, \{b\} \models_{-} \mathbf{G}(a \to b) \text{ and } \pi_f \models_{-} \mathbf{G}(b \to \mathbf{X} \neg a)$
- Semantics identical to standard LTL for infinite traces

Relative safety

Problem:

- Liveness checking is hard!
- Our composition makes it impossible to reduce the problem to safety!

Idea:

- Try to not check the "liveness part" of the property
- Use relative safety[Henzinger91]. A property "becomes" safety when another property holds.
- $\alpha \rightarrow \varphi$ is relative safety to α if φ is safety

NOTE: invariant checking of $P \neq$ checking of **G**P (deadlocks and livelocks)

Properties classification

Safety property:

 $P \subseteq \Sigma^{\omega}$ is a safety property iff $\forall \pi \in \Sigma^{\omega}$ s.t. $\pi \nvDash P$, $\exists \pi_f \in Pref(\pi)$ s.t. $\forall \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \nvDash P$.

Safety property:

 $P \subseteq \Sigma^{\omega}$ is a safety property iff $\forall \pi \in \Sigma^{\omega}$ s.t. $\pi \nvDash P$, $\exists \pi_f \in Pref(\pi)$ s.t. $\forall \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \nvDash P$.

Liveness property:

 $A \subseteq \Sigma^{\omega}$ is a liveness property iff $\forall \pi \in \Sigma^{\omega}, \forall \pi_f \in Pref(\pi) \ \exists \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \models A.$

Safety property:

 $P \subseteq \Sigma^{\omega}$ is a safety property iff $\forall \pi \in \Sigma^{\omega}$ s.t. $\pi \nvDash P$, $\exists \pi_f \in Pref(\pi)$ s.t. $\forall \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \nvDash P$.

Liveness property:

 $A \subseteq \Sigma^{\omega}$ is a liveness property iff $\forall \pi \in \Sigma^{\omega}, \forall \pi_f \in Pref(\pi) \ \exists \pi^{\omega} \in \Sigma^{\omega} : \pi_f \pi^{\omega} \models A.$

 $\textbf{SafetyLTL: } \varphi := a \mid \neg a \mid \varphi \lor \varphi \mid \textbf{X} \varphi \mid \varphi \textbf{R} \varphi$

 $safetyLTL = safety \cap LTL$

Let ${\cal P}$ and ${\cal A}$ be two properties. ${\cal P}$ is safety relative to ${\cal A}$ iff

$$\forall \pi \in A \text{ s.t. } \pi \notin P, \exists \pi_f \in Pref(\pi) \text{ s.t.} \\ \forall \pi^{\omega} \in \Sigma^{\omega} : \text{ if } \pi_f \pi^{\omega} \in A \text{ then } \pi_f \pi^{\omega} \notin P$$

Notable examples:

- φ_S is safety relative to \top .
- $\mathbf{G}p \rightarrow \mathbf{G}q$ is safety relative to $\mathbf{G}p$.
- φ_{SafMTL} is safety relative to non-zenoness.
- $\varphi \mathbf{U} \psi$ is safety relative to $\mathbf{F} \psi$

Liveness to safety

- Encodes absense of lasso-shaped path with an invariant
- Copy all the variables

A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. In International Workshop on Formal Methods for Industrial Critical Systems, 2002 K-liveness

- $\bullet\,$ Introduce a counter c that counts the occurrence of a fairness condition
- \bullet Checks $\mathbf{FG}\neg f$ by invariant checking $c\leq k$
- Can only prove valid properties

K. Claessen and N. Sörensson. A liveness checking algorithm that counts. 2012 Formal Methods in Computer-Aided Design (FMCAD), pages 52–59, 2012.

$$\left(\mathcal{M}' := \mathcal{M} imes \mathcal{M}_{lpha_S}
ight)$$

- $\alpha := \alpha_S \wedge \alpha_L$
- φ safetyLTL

- $\alpha := \alpha_S \wedge \alpha_L$
- φ safetyLTL

- $\mathcal{M}' \models_{INVAR} \varphi \Rightarrow \mathcal{M}' \models \varphi \ (\models_{INVAR} \text{ reduces safetyLTL to invariant})$
- Try to extend the trace to infinity

• φ safetyLTL

• $\mathcal{M}' \models_{INVAR} \varphi \Rightarrow \mathcal{M}' \models \varphi \ (\models_{INVAR} \text{ reduces safetyLTL to invariant})$

• Try to extend the trace to infinity

• φ safetyLTL

• $\mathcal{M}' \models_{INVAR} \varphi \Rightarrow \mathcal{M}' \models \varphi$ (\models_{INVAR} reduces safetyLTL to invariant)

• Try to extend the trace to infinity

$$\left(\mathcal{M}':=\mathcal{M} imes\mathcal{M}_lpha
ight)$$

$$\mathcal{M}' := \mathcal{M} \times \mathcal{M}_{lpha}$$
 $\mathcal{M}' \models_{INVAR \varphi}$

• $generalize(\mathcal{M}', l(\pi_f))$ block unfair states

 $\bullet\,$ If ${\cal M}$ is a finite state STS, the algorithm is complete

LTL to Symbolic Transition System $(\mathcal{M}_{\neg\phi})$

• $V_{\neg\phi} = V \cup \{v_{X\beta} \mid \mathbf{X}\beta \in Sub(\phi)\} \cup \{v_{\mathbf{X}(\beta_1 \mathbf{U}\beta_2)} \mid \beta_1 \mathbf{U}\beta_2 \in Sub(\phi)\} \cup \{v_{\mathbf{Y}\beta} \mid \mathbf{Y}\beta \in Sub(\phi)\} \cup \{v_{\mathbf{Y}\beta_1 \mathbf{S}\beta_2} \mid \beta_1 \mathbf{S}\beta_2 \in Sub(\phi)\}$

•
$$I_{\neg\phi} = Enc(\neg\phi) \land \bigwedge_{v_{\mathbf{Y}\beta} \in V_{\neg\phi}} \neg v_{\mathbf{Y}\beta}$$

•
$$T_{\neg\phi} = \bigwedge_{v_{\mathbf{X}\beta} \in V_{\neg\phi}} v_{\mathbf{X}\beta} \leftrightarrow Enc(\beta)' \wedge \bigwedge_{v_{\mathbf{Y}\beta} \in V_{\neg\phi}} Enc(\beta) \leftrightarrow v'_{\mathbf{Y}\beta}$$

• $F_{\neg\phi} = \{Enc(\beta_1 \mathbf{U}\beta_2) \rightarrow \beta_2 \mid \beta_1 \mathbf{U}\beta_2 \in Sub(\phi)\}$

where Sub is a function that maps a formula ϕ to the set of its subformulas, and Enc is defined recursively as:

- $Enc(\top) = \top$
- Enc(v) = v
- $Enc(\phi_1 \land \phi_2) = Enc(\phi_1) \land Enc(\phi_2)$
- $Enc(\neg \phi_1) = \neg Enc(\phi_1)$
- $Enc(\mathbf{X}\phi_1) = v_{\mathbf{X}\phi_1}$
- $Enc(\phi_1 \mathbf{U}\phi_2) = Enc(\phi_2) \lor (Enc(\phi_1) \land v_{\mathbf{X}(\phi_1 \mathbf{U}\phi_2)})$
- $Enc(\mathbf{Y}\phi_1) = v_{\mathbf{Y}\phi_1}$
- $Enc(\phi_1 \mathbf{S}\phi_2) = Enc(\phi_2) \lor (Enc(\phi_1) \land v_{\mathbf{Y}(\phi_1 \mathbf{S}\phi_2)})$

SafetyLTL to Symbolic Transition System

High level idea:

- \bullet Rewrite $\neg \phi$ in nnf
- Construct STS of $\neg \phi$ (similar to LTL2SMV)
- Compute invariant

$$INV_{\phi} := \neg(\bigwedge_{v_{\mathbf{X}\beta}} \neg v_{\mathbf{X}\beta})$$

SafetyLTL to Symbolic Transition System

High level idea:

- \bullet Rewrite $\neg \phi$ in nnf
- Construct STS of $\neg \phi$ (similar to LTL2SMV)
- Compute invariant

$$INV_{\phi} := \neg(\bigwedge_{v_{\mathbf{X}\beta}} \neg v_{\mathbf{X}\beta})$$

$$\mathcal{M}_{\neg\phi} := \langle \mathcal{V}_{\neg\phi}, \mathcal{I}_{\neg\phi}, \mathcal{T}_{\neg\phi} \rangle$$

$$I_{\neg\phi} = Enc(\neg\phi) \land \bigwedge_{v_{\mathbf{Y}\beta} \in V_{\neg\phi}} \neg v_{\mathbf{Y}\beta}$$

$$T_{\neg\phi} = \bigwedge_{v_{\mathbf{X}\beta} \in V_{\neg\phi}} v_{\mathbf{X}\beta} \to Enc(\beta)') \land$$
$$\bigwedge v'_{\mathbf{Y}\beta} \to Enc(\beta)$$

 $v_{\mathbf{Y}\beta} \in V_{\neg\phi}$

SafetyLTL to Symbolic Transition System

High level idea:

- \bullet Rewrite $\neg \phi$ in nnf
- Construct STS of $\neg \phi$ (similar to LTL2SMV)
- Compute invariant $INV_{\phi} := \neg(\bigwedge_{v_{\mathbf{x},\phi}} \neg v_{\mathbf{x},\beta})$

$$\mathcal{M}_{\neg\phi} := \langle \mathcal{V}_{\neg\phi}, \mathcal{I}_{\neg\phi}, \mathcal{T}_{\neg\phi} \rangle$$

$$I_{\neg\phi} = Enc(\neg\phi) \land \bigwedge_{v_{\mathbf{Y}\beta} \in V_{\neg\phi}} \neg v_{\mathbf{Y}\beta}$$

$$T_{\neg\phi} = \bigwedge_{v_{\mathbf{X}\beta} \in V_{\neg\phi}} v_{\mathbf{X}\beta} \to Enc(\beta)') \land$$
$$\bigwedge v'_{\mathbf{Y}\beta} \to Enc(\beta)$$

$$\bigwedge_{v_{\mathbf{Y}\beta}\in V_{\neg\phi}} v_{\mathbf{Y}\beta} \to Er$$

 $Enc(\varphi)$:

- $Enc(\phi_1 \land \phi_2) = Enc(\phi_1) \land Enc(\phi_2), Enc(\phi_1 \lor \phi_2) = Enc(\phi_1) \lor Enc(\phi_2)$
- $Enc(\neg \phi_1) = \neg Enc(\phi_1)$
- $Enc(\mathbf{X}\phi_1) = v_{\mathbf{X}\phi_1}$
- $Enc(\phi_1 \mathbf{U}\phi_2) = Enc(\phi_2) \lor (Enc(\phi_1) \land v_{\mathbf{X}(\phi_1 \mathbf{U}\phi_2)})$

- $\bullet~\mbox{If}~{\mathcal M}'~\mbox{has}~\mbox{\it livelocks},$ multiple steps are required
- We try to take longer counterexamples to rule out deadlock states ($\approx AX^n \top$)

 $safetyLTL2STSLa(\mathcal{M}',\varphi,n) :=$

$$\ \, \langle \mathcal{M}^{saf}_{\neg\phi}, INV_{\varphi} \rangle := safetyLTLSTS(\varphi)$$

$$\begin{array}{l} \mathfrak{O} \quad \mathcal{M}^{saf}_{\neg\phi} \leftarrow \langle \mathcal{V}' \cup \{la\}, \mathcal{I}' \wedge la = 0, \\ \mathcal{T}' \wedge (la > 0 \lor \neg INV_{\varphi} \rightarrow la' = la + 1) \land (la = 0 \land INV_{\varphi} \rightarrow la' = 0)) \rangle \end{array}$$

- Comparison with k-liveness, liveness to safety.
- $\bullet~A/G$ contracts (e.g. Wheel Brake System)
- Bounded response
- Asynchronous composition
- NuSMV models
- Monitor-Sensor

Comparison with k-liveness

Comparison with liveness to safety

Comparison with rels-no-la

29 / 30

- Performance strongly depends on the translation from property to STS (The construction might introduce deadlocks)
- $\alpha \rightarrow \varphi$ is a restricted application of relative safety
- Generalization is still a work in progress (based on inductive invariant extraction from k-liveness)
- Possible direction would be to specialise this for contract refinement