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Overall idea

Using a modern
SMT-based
program prover
to derive

counter-examples
for both correct and incorrect programs, hence:

 (1) Failing tests
 (2) Better counter-examples
 (3) Full-coverage test suites
 (4) Automatically generated program fixes
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Part 1 (presented by Bertrand Meyer)
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Tests and proofs?
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Edsger Dijkstra (1970)

Program testing 
can be used to 
show the presence 
of bugs, but never 
to show their 
absence!
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A key role of tests: the regression test suite

Consider a correct program

We shouldn’t need to test it
any more

But: we do want a test suite
for future evolution, to spot
possible regressions
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Tests and proofs?
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Tests and proofs

Rubens: Allegory of the Blessings of Peace (of Westphalia)
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Tests and proofs: duality

TestProof

Failure

Success
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Counterexamples

Some modern provers use an SMT solver:
 Attempt to prove program correct by trying to find a 

counterexample
 Normally, we hope to find none,

and then declare victory

 If the proof attempt fails, it yields a counterexample
 This counterexample is a test for the corresponding path 
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AutoProof technology stack

Eiffel classes with 
contracts

AutoProof

Boogie (prover)

Z3 (SMT solver)

MML

Rustan Leino

Nikolaj Bjørner

Nadia Polikarpova Carlo Furia Julian Tschannen

Bernd Schoeller

Leonardo de Moura
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Try AutoProof

http://autoproof.sit.org

http://autoproof.sit.org/
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Reminder: Eiffel technology

Software
development
approach based on
methodology,
language and tools
Encompasses entire
lifecycle
Built around
principles:
Design by Contract™, Open-Closed, Command-Query 
Separation, Single-Choice…
Full and uncompromising application of object technology
Supporting environment: EiffelStudio – open-source and 
commercial versions 
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A failed proof

TestProof

Failure

Success
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A failed proof can yield a useful test Huang, Meyer, Oriol, 
STVR, 2023

ensure
∀ j: 1 |ìì| a.count | a [j] <= Result

∃ j: 1 |ìì| a.count | a [j] = Result
end

max (a: ARRAY [INTEGER]): INTEGER
require aìcount > 0
local i: INTEGER
do

from Result := a [1]; i := 2 invariant
2 ≤ i and i ≤ aìcount + 1
∀ : 1 |ìì| (i − 1)   | a [j] ≤ Result
∃ j: 1 |ìì| (i − 1)   | a [j]  = Result

until i =aìcount loop
if a [i] > Result then Result := a [i]

end
i := i + 1
variant aìcount − i

end
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Part 2 (presented by Li Huang)
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Counterexample generation
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The decipherment of an SMT model
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The decipherment of an SMT model
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The decipherment of an SMT model
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The decipherment of an SMT model
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The decipherment of an SMT model
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The decipherment of an SMT model
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• Make the counterexample more intuitive through minimization

Counterexample minimization
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Minimize each integer in the counterexample

When the algorithm ends (no smaller value of 
m can be found), the counterexample from the 

last verification run is the minimal possible.

No smaller value yields the same verification result

Ask prover whether it’s possible to get a value 
of x (0 ≤ x < m) and still yields the same 
verification results. 

Counterexample minimization
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Experiment result

125 integers are minimized in total
108 are minimized into values [-2, 2]
58 are minimized to 0
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Generate test script from counterexample
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Seeding contradiction for full-coverage test suite
simple (a: INTEGER)

do
if a > 0 then

check False end
x := 1 -- Instruction 1

else
check False end
x := 2 -- Instruction 2

end
if a2 > a then

check False end
x := 3 -- Instruction 3

else
check False end
x := 4 -- Instruction 4

end
end

Test cases:
a = 0, a = 1

Branches 
not covered!
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The solution: conditional seeding
bn :=  non_deterministic (0 .. N)
do

if a > 0 then

x := 1 -- Instruction 1
else

x := 2 -- Instruction 2
end
if a2 > a then

x := 3 -- Instruction 3
else

x := 4 -- Instruction 4
end

N: number of 
basic blocks

Tests cover 
all branches!

if bn = 1 then check False end end

if bn = 2 then check False end end

if bn = 3 then check False end end

if bn = 4 then check False end end

(block 1)

(block 2)

(block 3)

(block 4)



31

Seeding contradiction: results and comparison (20 examples)

Examples
(mostly from 
verification 
competitions)

Seeding 
Contradiction

IntelliTest
(C#)

99.37% 97.1% 81.2%

0.5 27 259

6.3 10.5 623.3

20 19 7

AutoTest

Average coverage

Examples reaching 
exhaustive coverage

Average time to 
exhaustive coverage

Average generated tests 
to exhaustive coverage
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Current limitations (and future work)

 Limitations of SMT solver
 Some Eiffel mechanisms (genericity) not yet supported
 Single routines
 Examples still small, although some sophisticated
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The next step: generating fixes
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Proof2Fix: generating fixes for proof failures
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Example: CLOCK
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Example: CLOCK
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Generating candidate fixes

Fixes on contracts

• Precondition strengthening: add not 𝜙𝜙 to 𝑟𝑟’s precondition, to
rule out the faulty cases characterized by 𝜙𝜙.

• Postcondition weakening: if 𝜓𝜓 is the postcondition clause that
causes the proof to fail, replace it by not 𝜙𝜙 implies 𝜓𝜓, so that the
previously failing cases will now verify.

Candidate fixes based on a counterexample invariant 𝜙𝜙
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Generating candidate fixes

Fixes on implementation

Replace the implementation with the code snippet generated 
based on the following schema: 

Candidate fixes based on a counterexample invariant 𝜙𝜙
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Fixing Results of Proof2Fix
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Summary

Take advantage of the test-proofs complementarity

 Generate failing tests from failing proofs
 Make these tests meaningful to programmers
 For a correct program, generate a test suite:

• Guaranteed exhaustive coverage
• Does not require any test data
• Based on the program text only
• Entirely automatic
• Extremely fast

 Next: Automatic Program Repair with the same benefits
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Constructor Institute, Schaffhausen

Master programs (CSSE-Leadership/Quantum)
PhD and postdoc positions in SE, quantum, verification…
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(Fairly) recent books
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For more!
AutoProof http://autoproof.sit.org
Eiffel https://eiffel.com https://eiffel.org
Constructor Institute https://constructor.org/institute

http://autoproof.sit.org/
https://eiffel.com/
https://eiffel.org/
https://constructor.org/institute
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