) N ST R U CTO R Chair of Software Engineering O
INSTRERCARS

Roaming the proof-test border

S

Bertrand Meyer, Li Huang

Constructor Institute, Schaffhausen (CH)

(Work with Manuel Oriol and Ilgiz Mustafin)

WG2.3, Trento, 12 October 2023

Overall idea

Using a modern
SMT-based

program prover

to derive

counter-examples
for both correct and incorrect programs, hence:

- (1) Failing tests

> (2) Better counter-examples

> (3) Full-coverage test suites

- (4) Automatically generated program fixes

3 N STR UCTOR Chair of Software Engineering O
INSTRERCARS

Roaming the proof-test border

i o Pl |

_0 2l . —dn
Bertrand Meyer, Li Huang
Constructor Institute, Schaffhausen (CH)
(Work with Manuel Oriol and Ilgiz Mustafin)

WG 2.3, Trento, 12 October 2023

Part 1 (presented by Bertrand Meyer)

Tests and proofs?

The Battle of San Romano (1432) by Paolo Uccello

Edsger Dijkstra (1970) ©

Program testing
can be used to
show the presence
of bugs, but never
to show their
absence!

A key role of tests: the regression test suite ©

Consider a correct program

We shouldn’t need to test it
any more

But: we do want a test suite
for future evolution, to spot
possible regressions

Tests and proofs?

The Battle of San Romano (1432) by Paolo Uccello

Tests and proofs

. waee : _ '
Rubens: Allegory of the Blessings of Peace (of Westphalia

Tests and proofs: duality

Test

Success

Failure

10

Counterexamples ©

Some modern provers use an SMT solver:

> Attempt to prove program correct by trying to find a
counterexample

> Normally, we hope to find none,
and then declare victory

> If the proof attempt fails, it yields a counterexample
» This counterexample is a test for the corresponding path

11

AutoProof technology stack ©

l Eiffel classes with | | MM l ﬁ R
contracts ,

‘ AutoProof l

‘ Boogie (prover) I

‘ 73 (SMT solver) I

Nadia Polikarpova Carlo Furia Julian Tschannen

Rustan Leino

Leonardo de Moura

Nikolaj Bjerner

12

Try AutoProof

http://autoproof.sit.org
- S_T

AutoProof is a verifier of object-oriented programs that uses Boogie as a back-end. AutoProof is an ongoing
development of the Chair of Software Engineering at SIT, based on an earlier implementation at ETH Zurich.

AutoProof online

You can use AutoProof in your browser without downloading anything. This version is limited to single-class
projects.

AutoProof as a GitHub action

You can make AutoProof action part of your GitHub project continuous development pipeline.

Docker image with AutoProof

You can pull a Docker image with a full-fledged Linux-based distribution of AutoProof.

Gallery of verified programs

A software repository collects a suite of benchmark problems implemented in Eiffel and verified with AutoProof.
You can run verification online and see the results!

Documentation

« Tutorial: the tutorial gets you started with AutoProof.
« Manual: the manual offers a more systematic description of AutoProof.

[o JERSSURIPSI EER—— T PR B ——"

http://autoproof.sit.org/

Reminder: Eiffel technology ©

Bl View Favorites Popd Eseeutan

Software SR T
development
approach based on .

methodology,

language and tools =

Encompasses entire e TG
lifecycle

Built around
principles: —
Design by Contract™, Open-Closed, Command-Query
Separation, Single-Choice...

Full and uncompromising application of object technology

Supporting environment: EiffelStudio — open-source and
commercial versions

14

A failed proof

Proof

Success

Test

Failure

A failed prc¢ yer, Oriol, ©

@ Verify * [l | 24 2 Suc
Class
=€ MAX

max (a: ARRAY KE W
require a.cc *“ THEN A x Sah

local i: INTI %Tcﬁg_t{ —F\ Ny L I"

do N : + H s ~a[j] <= Result

‘ .t&- =
from Res 3 - &: a [j| = Result

2<ia -
Vil { J
j: 1|
until i =a.

if a

end

i=1+1

varianta] TUNK Mou SHOULD S MORE
end EXPLIUT HERE IN STEP TWO," 16

Part 2 (presented by Li Huang)

17

Counterexample generation

max (a: SIMPLE ARRAY [INTEGER]): INTEGER
require
array not empty: a.count > O
local
i: INTEGER
do
Result := a [1]
from
i := 2
invariant
i in bounds: 2 <= i A 1 <= a.count + 1
max so far: v c: 1 |..] (1 - 1) | a.sequence [c] <= Result
result in array: 3 c: 1 |..] (1 - 1) | a.sequence [c] = Result
until
i >»>= a.count
loop
if a [1] > Result then
Result := a [1i]
end
i:=1+1
variant
a.count - 1 + 1
end
ensure
is max: V c: 1 |..] a.count | a.sequence [c] <= Result
in array: 3 c: 1 |..| a.count | a.sequence [c] = Result
end

@ Verify - [‘ 4 2 Successful | ¢y 1 Failed A\ 0 Errors Filter. X[

- Class Feature Information
BQ MAX IN_ARRAY.. max Postcondition is_max may be violated.
=+ Counterexample: a.count = 30615,a[1] =0,a[30614] =0, a [30615] = 10451. []

18

The decipherment of an SMT model

a -> TRU!'val!
Heap -> TE@U!'val!

SIMPLE ARRAYAINTEGER 32%.sequence -> TRU!val!

MapTypeOSelect -> {
TEU'val! TRU'wval! T@U'val'!9 -> TE@U!'val!

}

Seg#Item -> {

TRU''val! ->
TEUlwval! ->
TRU''val! ->

}

Seqg#Length -> {
T TRU'val! ->

}

19

The decipherment of an SMT model

a -> T@U!val!))
Heap -> TE@U!'val!

SIMPLE ARRAYAINTEGER 32%.sequence -> TRU!val!

MapTypeOSelect -> {
TEU'val! TRU'wval! T@U'val'!9 -> TE@U!'val!

}

Seg#Item -> {

TRU''val! ->
TEUlwval! ->
TRU''val! ->

}

Seqg#Length -> {
T TRU'val! ->

}

20

The decipherment of an SMT model

a -> TRU!'val!
Heap -> TE@U!'val! <&

SIMPLE ARRAYAINTEGER 32%.sequence -> TRU!val!
MapTypeOSelect -> {
TRU!'val! TEU!'val! TRU'val!9 -> TQRU'val!

}

Seg#Item -> {

TRU''val! ->
TEUlwval! ->
TRU''val! ->

}

Seqg#Length -> {
T TRU'val! ->

}

21

The decipherment of an SMT model

a -> TRU!'val!
Heap -> TE@U!'val!

SIMPLE ARRAYAINTEGER 324.sequence -> T@U'!'val!t <=

MapTypeOSelect -> {
TEU'val! TRU'wval! T@U'val'!9 -> TE@U!'val!

}

Seg#Item -> {

TRU''val! ->
TEUlwval! ->
TRU''val! ->

}

Seqg#Length -> {
T TRU'val! ->

}

22

The decipherment of an SMT model

a -> T@U'val!l®
Heap -> TRQU!'wval'Zc

SIMPLE ARRAYAINTEGER 32%.sequence -> TQU!vall!®
MapTypeOSelect -> {
TRU!'val!Zc T@RU'wval!ls TERU!'vallY -> TRU!'wvall4c

}

Seg#Item -> {

TRU!'vall'40o 1 => (
TRU!'vall40o 20614 => (
T@U'val'40 30615 => 10451

}

TRU!'vall40 => 206lC

TSeq#Length -> {
}

" -.sequence -> TEU!vall4r

23

The decipherment of an SMT model

a -> T@U'val!l®
Heap -> TRU!'wval!Zc

SIMPLE ARRAYAINTEGER 32%.sequence -> T@U!val!®
TMapTypeOSelect -> {

}

TEU'val'!'Ze TEU!'wval!'ls TRU'wvall!® -> T@U'valld

~
I

Seg#Item -> {
TEU'val'40 1 -> 0O
TA@U'val'4o 20614 => 0O
TEU'val'40 30615 => 10451

}

Seqg#Length -> {
TEU!'val'40 =-> 30615

}

= . .sequence -> T@U!vall'!40

24

Counterexample minimization

Make the counterexample more intuitive through minimization

@Verify | ‘ @2 Successful 1_61 Failed &U Errors

=€) MAX IN ARRAY.. max
=+

- Class Feature

Information

Postcondition iszmax may be violated.
Counterexample: a.count = 30615,a[1] =0, a [30614] =0, a [30615] = 10451.

‘Filter:

X|\r'

=

@ Verify - [‘ i 2 Successful | ¢y 1 Failed A\ 0 Errors

v Class Feature
=€) MAX_IN_ARRAY.. max

L

$

Information

Postcondition is_max may be violated.
Postcondition is_ max may be violated.
Minimal: acount=2,a[1]=0,a[2] = 1.

‘Filter:

X‘\r-

Counterexample minimization

Minimize each integer in the counterexample

from

m <— current value of x
B.add_precondition (0 <z A x < m)
verify

until

No smaller value yields the same verification result

Ask prover whether it’s possible to get a value
of x (0 < x < m) and still yields the same

verification results.

loop When the algorithm ends (no smaller value of
B.remove_last_precondition m can be found), the counterexample from the
m <— pick a smaller value last verification run is the minimal possible.
B.add_precondition (0 <z A x < m)

verify

26

Experiment result

Example Number Total Number of Avg. Reduction | Avg. Number | Avg. Verification | Avg. Minimization
of versions | Minimized Integers Rate of Iterations Time (seconds) Time (seconds)

ACCOUNT 7 17 99.98% 2.5 0.028 0.087
CLOCK 6 13 100% 1.46 0.019 0.034
HEATER 2 4 48.4% 4.25 0.030 0.128
LAMP 4 8 0.819% 1.875 0.115 0.233
BINARY_SEARCH 5 31 98.8% 3.22 0.448 1.512
LINEAR_SEARCH 3 99.9% 3.44 0.087 0.279
SQUARE_ROOT 4 3 89.9% 4 0.133 0.505
MAX 4 12 87.1% 4.25 0.213 1.456
SUM_AND_MAX 6 11 80.7% 345 0.590 1.704

125 integers are minimized in total

108 are minimized into values [-2, 2]

58 are minimized to o

27

Generate test script from counterexample

@Verlfy L] ‘ @6 Successful|$1 Failed | A\ 0 Errors |Filter:| X| -

Jé Class Feature | Information
==k ACCOUNT transfer Postcondition withdrawal made may be violated.
Postcondition withdrawal_made may be violated.
E Counterexample: balance = -2147475890, credit_limit = -2147483610, amount = 7720, other = Current.

| Minimal: balance = 0, credit_limit = -1, amount = 1, other = Current.

«| | »

L

test ACCOUNT transfer
local
current object: ACCOUNT
amount: INTEGER
other: ACCOUNT

do
create current object.make
{P_INTERNAL}.set integer 32 field ("balance", current object, 0)
{P_INTERNAL} .set integer 32 field ("credit limit", current object, (-1))
amount := 1
other := current object
current object.transfer (amount, other)

end

28

Seeding contradiction for full-coverage test suite ©

simple (a: INTEGER)

do
if a > 0 then
check False end
Test cases:
x:=1 -- Instruction 1 a=0a=1
else ~
check False end
X:=2 -- Instruction 2
end

if a2 > a then

check False end—
X:=3 -- Instruction 3
Branches
else _
_ not covered! |

check False end¢— - "
X =4 -- Instruction 4

end

end

29

The solution: conditional seeding ©

bn := lnon_deterministic (0 .. N)I

N: number of

do _ basic blocks
if a > 0 then '
l if bn = 1 then check False end end ’
X =1 -- Instruction 1 (block 1)
else
l if bn = 2 then check False end end '
X =2 -- Instruction 2 (block 2)
end

Tests cover

if a® > a then _ all branches!

l if bn = 3 then check False end end '

X =3 —- Instruction 3 (block 3)
else

l if bn = 4 then check False end end |

X =4 -~ Instruction 4 (block 4)
end

30

Seeding contradiction: results and comparison (20 examples)

Average coverage

Examples reaching
exhaustive coverage

Average time to
exhaustive coverage

Average generated tests
to exhaustive coverage

(" Seeding I

Contradiction

99.37%

20

0.5

6.3

EEEE

©

IntelliTest AutoTest

(C#)

97.1% 81.2%

9

tE

b EE

27 259

10.5 623.3

E

Account Clock Heater Lamp Max Linear

Insertion Gnome Square Sum and Arithmetic

Search Sort Sort root max
LOC 214 1563 102 95 49 64 122 62 56 56 204
Examples
Branches 14 10 8 8 3 5 5 5 1 14
(mostly from
verification Binary R'ecursive Dutch Two way Two way Quick Selection Bubble Optimized Total
.. search binary search flag max sort Sort Sort gnome sort
competitions) 74 89 188 49 232 167 165 183 2409
5 7 11 4 9 b5}) 8 141

31

Current limitations (and future work)

> Limitations of SMT solver
> Some Eiffel mechanisms (genericity) not yet supported
» Single routines

> Examples still small, although some sophisticated

32

The next step: generating fixes

transfer (amount: INTEGER;

-— Transfer

note

explicit: wrapping

regquire

other not void:

other: ACCOUNT)

“amount' from “Current' to

other /= Void

amount not negative: amount >= 0
amount not too large: amount <= balance

do

withdraw (amount)

other.deposit (amount)
ensure

-— Allowed to modify the state of “Current' and
(by default a procedure can only modify “Current'):

modify (Current, other)

balance decreased: balance = old balance - amount

other balance increased: other.balance = old other.balance + amount
end

“other'.

AutoProof

@Verify' W ‘ @4 Successful |_-6T Failed &0 Errors

J_| Class | Feature

| Information

=€ ACCOUNT transfer

Postcondition balance_decreased may be violated.
Postcondition balance_decreased may be violated.

Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:
Counterexample:

balance = 21239, amount = 1
balance = 21239, amount = 1
balance = 6335, amount = 1,
balance = 1, amount = 1, oth
balance = 9295, amount = 1,
balance = 17946, amount = 1
balance = 12256, amount = 1
balance = 6732, amount = 59
balance = 15217, amount = 1
balance = 28171, amount = 1
balance = 6152, amount = 1,
balance = 16900, amount = 1
balance = 21137, amount = 1
balance = 5706, amount = 78

pther = Current.
br = Current.

bther = Current.

pther = Current.

balance = 1, amount = 1, oth

er = Current.

other = Current.
other = Current.

other = Current.
other = Current.
other = Current.
other = Current.
other = Current.

other = Current.
other = Current.
other = Current.

33

Proof2Fix: generating fixes for proof failures

®
— x>0,y=z2 v
o | a=b+1,c<d| B e
— x > increase_hours
invariants from

Eiffel class proof failures counterexamples candidate fixes

valid fixes

34

Example: CLOCK ©

increase_hours increase_minutes.

do do

if hours =24 then

hours := 0

if minutes <59 then

minutes := minutes + 1
else
else
hours := hours + 1)
minutes := 0

end
end
ensure
end
: : hours_increased: old minutes=59 = hours=(old hours+1)\\24
invariant

hours_valid: 0 < hours A hours < 23 end

@) Verify - [l | g4 6 Successful | @ 2 Failed | A\ 0 Errors Filter:] X wr-
| | Feature | Inftormation | Position | Ti...

D-o increase_hours Invariant hours_valid might not hold . 8 0.02

;1-0 increase_minutes Postcondition hours_increased may be wolated 16 0.01

35

Example: CLOCK

increase_hours_fixed
do
if hours = 23 then
hours := 0
else
if hours =24 then
hours := 0
else
hours := hours + 1
end
end
end

increase_minutes_fixed
do
if minutes = 59 then
increase_hours
end
if minutes <59 then
minutes := minutes + 1
else
minutes := 0
end
end

AutoProot

@) Verify - [l | g 8 Successful @ O Failed A 0 Errors

| | Feature

v increase_hours
v increase_minutes
v increase_seconds

| Information

Verification successful.
Verification successful.
Verification successful.

Filter: l X -

| Position

36

Generating candidate fixes

Candidate fixes based on a counterexample invariant ¢

Fixes on contracts

e Precondition strengthening: add not ¢ to r’s precondition, to
rule out the faulty cases characterized by ¢.

e Postcondition weakening: if 1 is the postcondition clause that

causes the proof to fail, replace it by not ¢ implies 1, so that the
previously failing cases will now verify.

37

Generating candidate fixes

Candidate fixes based on a counterexample invariant ¢

Fixes on implementation

if ¢ then
snippet

end

old_stmt

Replace the implementation with the code snippet generated
based on the following schema:

if ¢ then
snippet
else

old_stmt
end

38

Fixing Results of Proof2Fix ©

Classes LOC #Fail #Fixed | Avg#Cand Avg#Valid AvgTr (m)
ACCOUNT 97 7 3 140 5 1.9
CLOCK 131 8 4 337 8 2.7
HEATER 73 4 4 432 21 4.5
LAMP 71 4 3 454 6 4.6
ARITHMETIC 176 3 2 26 8 1.1
BINARY_SEARCH 50 6 0 - - -
MAX_IN_ARRAY 33 6 0 - - -
SQUARE_ROOT 38 4 3 9 1 1.6
V_ARRAY 1756 1 1 267 6 2.4
V_ARRAYED LIST | 1090 1 1 121 9 9.4
V_INDEXABLE_SET | 1125 1 1 281 7 2.4
V_LINKED_LIST 2445 2 2 457 15 2.3
Total 7085 47 24 252 8 3

39

Summary ©

Take advantage of the test-proofs complementarity

> Generate failing tests from failing proofs
> Make these tests meaningful to programmers
» For a correct program, generate a test suite:

e Guaranteed exhaustive coverage

* Does not require any test data
* Based on the program text only

ntirely automatic
e Extremely fast
» Next: Automatic Program Repair with the same benefits

40

Constructor Institute, Schaffhausen

Master programs (CSSE-Leadership/Quantum)
PhD and postdoc positions in SE, quantum, verification...

(Fairly) recent books

AglleI

The Good, the Hyp

@ Springer

Bertrand Meyer

Handbook of
Requirements and
Business Analysis

@ Springer

For more!

AutoProof http://autoproof.sit.org
Eiffel https://eiffel.com https://eiffel.org

Constructor Institute https://constructor.org/institute

43

http://autoproof.sit.org/
https://eiffel.com/
https://eiffel.org/
https://constructor.org/institute

	Slide Number 1
	Overall idea
	Slide Number 3
	Part 1 (presented by Bertrand Meyer)
	Tests and proofs?
	Edsger Dijkstra (1970)
	A key role of tests: the regression test suite
	Tests and proofs?
	Tests and proofs
	Tests and proofs: duality
	Counterexamples
	AutoProof technology stack
	Try AutoProof
	Reminder: Eiffel technology
	A failed proof
	A failed proof can yield a useful test
	Part 2 (presented by Li Huang)
	Counterexample generation
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Generate test script from counterexample
	Seeding contradiction for full-coverage test suite
	The solution: conditional seeding
	Seeding contradiction: results and comparison (20 examples)
	Current limitations (and future work)
	The next step: generating fixes
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Summary
	Constructor Institute, Schaffhausen
	(Fairly) recent books
	For more!

