
Chair of Software Engineering

Bertrand Meyer, Li Huang
Constructor Institute, Schaffhausen (CH)

(Work with Manuel Oriol and Ilgiz Mustafin)

WG2.3, Trento, 12 October 2023

A

Roaming the proof-test border

2

Overall idea

Using a modern
SMT-based
program prover
to derive

counter-examples
for both correct and incorrect programs, hence:

 (1) Failing tests
 (2) Better counter-examples
 (3) Full-coverage test suites
 (4) Automatically generated program fixes

Chair of Software Engineering

A

Roaming the proof-test border

Bertrand Meyer, Li Huang
Constructor Institute, Schaffhausen (CH)

(Work with Manuel Oriol and Ilgiz Mustafin)

WG 2.3, Trento, 12 October 2023

4

Part 1 (presented by Bertrand Meyer)

5

Tests and proofs?

6

Edsger Dijkstra (1970)

Program testing
can be used to
show the presence
of bugs, but never
to show their
absence!

7

A key role of tests: the regression test suite

Consider a correct program

We shouldn’t need to test it
any more

But: we do want a test suite
for future evolution, to spot
possible regressions

8

Tests and proofs?

9

Tests and proofs

Rubens: Allegory of the Blessings of Peace (of Westphalia)

10

Tests and proofs: duality

TestProof

Failure

Success

11

Counterexamples

Some modern provers use an SMT solver:
 Attempt to prove program correct by trying to find a

counterexample
 Normally, we hope to find none,

and then declare victory

 If the proof attempt fails, it yields a counterexample
 This counterexample is a test for the corresponding path

12

AutoProof technology stack

Eiffel classes with
contracts

AutoProof

Boogie (prover)

Z3 (SMT solver)

MML

Rustan Leino

Nikolaj Bjørner

Nadia Polikarpova Carlo Furia Julian Tschannen

Bernd Schoeller

Leonardo de Moura

13

Try AutoProof

http://autoproof.sit.org

http://autoproof.sit.org/

14

Reminder: Eiffel technology

Software
development
approach based on
methodology,
language and tools
Encompasses entire
lifecycle
Built around
principles:
Design by Contract™, Open-Closed, Command-Query
Separation, Single-Choice…
Full and uncompromising application of object technology
Supporting environment: EiffelStudio – open-source and
commercial versions

15

A failed proof

TestProof

Failure

Success

16

A failed proof can yield a useful test Huang, Meyer, Oriol,
STVR, 2023

ensure
∀ j: 1 |ìì| a.count | a [j] <= Result

∃ j: 1 |ìì| a.count | a [j] = Result
end

max (a: ARRAY [INTEGER]): INTEGER
require aìcount > 0
local i: INTEGER
do

from Result := a [1]; i := 2 invariant
2 ≤ i and i ≤ aìcount + 1
∀ : 1 |ìì| (i − 1) | a [j] ≤ Result
∃ j: 1 |ìì| (i − 1) | a [j] = Result

until i =aìcount loop
if a [i] > Result then Result := a [i]

end
i := i + 1
variant aìcount − i

end

17

Part 2 (presented by Li Huang)

18

Counterexample generation

19

The decipherment of an SMT model

20

The decipherment of an SMT model

21

The decipherment of an SMT model

22

The decipherment of an SMT model

23

The decipherment of an SMT model

24

The decipherment of an SMT model

25

• Make the counterexample more intuitive through minimization

Counterexample minimization

26

Minimize each integer in the counterexample

When the algorithm ends (no smaller value of
m can be found), the counterexample from the

last verification run is the minimal possible.

No smaller value yields the same verification result

Ask prover whether it’s possible to get a value
of x (0 ≤ x < m) and still yields the same
verification results.

Counterexample minimization

27

Experiment result

125 integers are minimized in total
108 are minimized into values [-2, 2]
58 are minimized to 0

28

Generate test script from counterexample

29

Seeding contradiction for full-coverage test suite
simple (a: INTEGER)

do
if a > 0 then

check False end
x := 1 -- Instruction 1

else
check False end
x := 2 -- Instruction 2

end
if a2 > a then

check False end
x := 3 -- Instruction 3

else
check False end
x := 4 -- Instruction 4

end
end

Test cases:
a = 0, a = 1

Branches
not covered!

30

The solution: conditional seeding
bn := non_deterministic (0 .. N)
do

if a > 0 then

x := 1 -- Instruction 1
else

x := 2 -- Instruction 2
end
if a2 > a then

x := 3 -- Instruction 3
else

x := 4 -- Instruction 4
end

N: number of
basic blocks

Tests cover
all branches!

if bn = 1 then check False end end

if bn = 2 then check False end end

if bn = 3 then check False end end

if bn = 4 then check False end end

(block 1)

(block 2)

(block 3)

(block 4)

31

Seeding contradiction: results and comparison (20 examples)

Examples
(mostly from
verification
competitions)

Seeding
Contradiction

IntelliTest
(C#)

99.37% 97.1% 81.2%

0.5 27 259

6.3 10.5 623.3

20 19 7

AutoTest

Average coverage

Examples reaching
exhaustive coverage

Average time to
exhaustive coverage

Average generated tests
to exhaustive coverage

32

Current limitations (and future work)

 Limitations of SMT solver
 Some Eiffel mechanisms (genericity) not yet supported
 Single routines
 Examples still small, although some sophisticated

33

The next step: generating fixes

34

Proof2Fix: generating fixes for proof failures

35

Example: CLOCK

36

Example: CLOCK

37

Generating candidate fixes

Fixes on contracts

• Precondition strengthening: add not 𝜙𝜙 to 𝑟𝑟’s precondition, to
rule out the faulty cases characterized by 𝜙𝜙.

• Postcondition weakening: if 𝜓𝜓 is the postcondition clause that
causes the proof to fail, replace it by not 𝜙𝜙 implies 𝜓𝜓, so that the
previously failing cases will now verify.

Candidate fixes based on a counterexample invariant 𝜙𝜙

38

Generating candidate fixes

Fixes on implementation

Replace the implementation with the code snippet generated
based on the following schema:

Candidate fixes based on a counterexample invariant 𝜙𝜙

39

Fixing Results of Proof2Fix

40

Summary

Take advantage of the test-proofs complementarity

 Generate failing tests from failing proofs
 Make these tests meaningful to programmers
 For a correct program, generate a test suite:

• Guaranteed exhaustive coverage
• Does not require any test data
• Based on the program text only
• Entirely automatic
• Extremely fast

 Next: Automatic Program Repair with the same benefits

41

Constructor Institute, Schaffhausen

Master programs (CSSE-Leadership/Quantum)
PhD and postdoc positions in SE, quantum, verification…

42

(Fairly) recent books

43

For more!
AutoProof http://autoproof.sit.org
Eiffel https://eiffel.com https://eiffel.org
Constructor Institute https://constructor.org/institute

http://autoproof.sit.org/
https://eiffel.com/
https://eiffel.org/
https://constructor.org/institute

	Slide Number 1
	Overall idea
	Slide Number 3
	Part 1 (presented by Bertrand Meyer)
	Tests and proofs?
	Edsger Dijkstra (1970)
	A key role of tests: the regression test suite
	Tests and proofs?
	Tests and proofs
	Tests and proofs: duality
	Counterexamples
	AutoProof technology stack
	Try AutoProof
	Reminder: Eiffel technology
	A failed proof
	A failed proof can yield a useful test
	Part 2 (presented by Li Huang)
	Counterexample generation
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Generate test script from counterexample
	Seeding contradiction for full-coverage test suite
	The solution: conditional seeding
	Seeding contradiction: results and comparison (20 examples)
	Current limitations (and future work)
	The next step: generating fixes
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Summary
	Constructor Institute, Schaffhausen
	(Fairly) recent books
	For more!

