Comparing legacy and modern implementations: migrating from analogical to software-based Railway Interlocking Systems

Anna Becchi Alessandro Cimatti

12 October 2023

Industrial example: italian Railway Interlocking Systems

Industrial example: italian Railway Interlocking Systems

Relay-based circuits (RRIS)

Relay-based circuits (RRIS)

Software (SwRIS)

Relay-based circuits (RRIS)

Software (SwRIS)

Relay-based circuits (RRIS)

Software (SwRIS)

=?

Electrical variables

Software variables

 \checkmark Making available Relay-based RIS models: from drawings to timed transition systems

- $\checkmark\,$ Making available Relay-based RIS models: from drawings to timed transition systems
- \checkmark Correlate different computational models with Abstraction Modulo Stability

- $\checkmark\,$ Making available Relay-based RIS models: from drawings to timed transition systems
- $\checkmark\,$ Correlate different computational models with Abstraction Modulo Stability
- Consider a specific configuration *p*:

- $\checkmark\,$ Making available Relay-based RIS models: from drawings to timed transition systems
- $\checkmark\,$ Correlate different computational models with Abstraction Modulo Stability
- Consider a specific configuration *p*:
 - Testing $\operatorname{RRIS}[p] \subseteq \operatorname{SwRIS}[p]$

- $\checkmark\,$ Making available Relay-based RIS models: from drawings to timed transition systems
- $\checkmark\,$ Correlate different computational models with Abstraction Modulo Stability
- Consider a specific configuration *p*:
 - Testing $\operatorname{RRIS}[p] \subseteq \operatorname{SwRIS}[p]$
 - Proving RRIS[*p*] = SwRIS[*p*]

- $\checkmark\,$ Making available Relay-based RIS models: from drawings to timed transition systems
- $\checkmark\,$ Correlate different computational models with Abstraction Modulo Stability
- Consider a specific configuration *p*:
 - Testing $\operatorname{RRIS}[p] \subseteq \operatorname{SwRIS}[p]$
 - Proving RRIS[*p*] = SwRIS[*p*]
- Many other open problems...

Plan of the talk

Making available the RRIS models

Ø Abstraction Modulo Stability

 $\textcircled{\textbf{S}} \text{ Testing } RRIS \subseteq SwRIS$

Remaining problems

Circuit specified with Kirchhoff laws

 $C_1(I_1, E_1, O_1)$ $C_2(I_2, E_2, O_2)$

Remove Electrical variables

 $C_1^{(opt)}(I_1, O_1) = \exists E_1 . C_1 \qquad C_2^{(opt)}(I_2, O_2) = \exists E_2 . C_2$

 $C_1(I_1, O_1) \qquad C_2(I_2, O_2)$ A.switch = next(A.coil) URGENT A.switch \neq A.coil

(If needed) break cycles

Norma: a compiler from RRIS to Timed SMV [TACAS22]

Norma: a compiler from RRIS to Timed SMV [TACAS22]

¹Symbolic infinite-state timed transition system: Timed nuXmv [CimattiGMRT – CAV'19]

Norma: a compiler from RRIS to Timed SMV [TACAS22]

¹Symbolic infinite-state timed transition system: Timed nuXmv [CimattiGMRT – CAV'19]

Norma: a compiler from RRIS to Timed SMV [TACAS22]

¹Symbolic infinite-state timed transition system: Timed nuXmv [CimattiGMRT – CAV'19]

Norma outcomes

Plan of the talk

Making available the RRIS models

Abstraction Modulo Stability

 $\textcircled{\textbf{3} Testing RRIS} \subseteq SwRIS$

Remaining problems

Given:

- $\mathcal{M} = \langle X, C, I, \operatorname{Init}(X), \operatorname{Trans}(X, I, X') \rangle$ timed transition system
- \mathcal{M}^{τ} closed system: $\operatorname{Trans}^{\tau} := \operatorname{Trans} \land (I = I')$
- P set of predicate variables $(P \subseteq X)$
- σ stability definition: $[\![\phi_{\sigma}]\!] = \{s \mid \mathcal{M}^{\tau}, s \models \sigma\}$ are the stable states

Given:

- $\mathcal{M} = \langle X, C, I, \text{Init}(X), \text{Trans}(X, I, X') \rangle$ timed transition system
- \mathcal{M}^{τ} closed system: $\operatorname{Trans}^{\tau} := \operatorname{Trans} \land (I = I')$
- P set of predicate variables $(P \subseteq X)$
- σ stability definition: $[\![\phi_{\sigma}]\!] = \{s \mid \mathcal{M}^{\tau}, s \models \sigma\}$ are the stable states

$AMS(P, \sigma): TTS \rightarrow FSM$

Given:

- $\mathcal{M} = \langle X, C, I, \text{Init}(X), \text{Trans}(X, I, X') \rangle$ timed transition system
- \mathcal{M}^{τ} closed system: $\operatorname{Trans}^{\tau} := \operatorname{Trans} \land (I = I')$
- P set of predicate variables $(P \subseteq X)$
- σ stability definition: $[\![\phi_{\sigma}]\!] = \{s \mid \mathcal{M}^{\tau}, s \models \sigma\}$ are the stable states

$AMS(P, \sigma): TTS \rightarrow FSM$

• $AMS(P, \sigma)(\mathcal{M}) = \mathcal{A} = \langle P, I, Init_{\mathcal{A}}(P), Trans_{\mathcal{A}}(P, I, P') \rangle$

Given:

- $\mathcal{M} = \langle X, C, I, \text{Init}(X), \text{Trans}(X, I, X') \rangle$ timed transition system
- \mathcal{M}^{τ} closed system: $\operatorname{Trans}^{\tau} := \operatorname{Trans} \land (I = I')$
- P set of predicate variables $(P \subseteq X)$
- σ stability definition: $[\![\phi_{\sigma}]\!] = \{s \mid \mathcal{M}^{\tau}, s \models \sigma\}$ are the stable states

$AMS(P, \sigma): TTS \rightarrow FSM$

- $\operatorname{AMS}(P, \sigma)(\mathcal{M}) = \mathcal{A} = \langle P, I, \operatorname{Init}_{\mathcal{A}}(P), \operatorname{Trans}_{\mathcal{A}}(P, I, P') \rangle$
- $p_0 \models \text{Init}_{\mathcal{A}}$ iff

 $\mathcal{M}^{\tau} \models_{\exists} (\neg \phi_{\sigma} \cup (\phi_{\sigma} \land p_{0}))$

Given:

- $\mathcal{M} = \langle X, C, I, \operatorname{Init}(X), \operatorname{Trans}(X, I, X') \rangle$ timed transition system
- \mathcal{M}^{τ} closed system: $\operatorname{Trans}^{\tau} := \operatorname{Trans} \land (I = I')$
- P set of predicate variables $(P \subseteq X)$
- σ stability definition: $[\![\phi_{\sigma}]\!] = \{s \mid \mathcal{M}^{\tau}, s \models \sigma\}$ are the stable states

$AMS(P, \sigma): TTS \rightarrow FSM$

- $\operatorname{AMS}(P, \sigma)(\mathcal{M}) = \mathcal{A} = \langle P, I, \operatorname{Init}_{\mathcal{A}}(P), \operatorname{Trans}_{\mathcal{A}}(P, I, P') \rangle$
- $p_0 \models \text{Init}_{\mathcal{A}}$ iff

$$\mathcal{M}^{\tau} \models_{\exists} (\neg \phi_{\sigma} \cup (\phi_{\sigma} \land p_{0}))$$

• $(p_1, in, p_2) \models \operatorname{Trans}_{\mathcal{A}} iff$

$$\mathcal{M} \models_{\exists} F \left((\phi_{\sigma} \land p_{1}) \land \left(\operatorname{Gin} \land X(\neg \phi_{\sigma} \cup (\phi_{\sigma} \land p_{2})) \right) \right).$$

How to choose σ

- "predicate abstraction" $\sigma := \top$
- non-urgent abstraction $\sigma := \exists X', I$. Trans $(X, I, X') \land \delta > 0$
- T-time abstraction ($\mathcal{T} \in \mathbb{R}_+$) $\sigma := \mathrm{Y}(\delta > \mathcal{T})$
- same-predicate abstraction $\sigma := AG(P = XP)$

Plan of the talk

Making available the RRIS models

Ø Abstraction Modulo Stability

 $\textbf{3} \text{ Testing } \mathrm{RRIS} \subseteq \mathrm{SwRIS}$

Remaining problems

Testing $\operatorname{RRIS}[p] \subseteq \operatorname{SwRIS}[p]$

$\forall \pi \in \text{Simulate}(\text{RRIS}[p]) \text{.} \texttt{test}_{\text{SwRIS}[p]}(\mu(\pi))$

where:

- Simulate: $\mathcal{M} \to \wp(\Pi_{\mathcal{M}})$ paths generator
- $\mu: \Pi_{\mathrm{RRIS}[p]} \rightarrow \mathit{Testcases}_{\mathrm{SwRIS}[p]}$ mapping
- test_{SwRIS[p]} test executor for SwRIS[p]

Test executor: TOSCA

A tool developed by FBK for RFI. Provided functionalities:

- Specify abstract test cases in Controlled Natural Language
 - sequence of steps specifying events, commands, assumptions, assertions
 - does not need to refer to a specific station
- Automatically instantiate abstract tests in executable test cases
- Execute test cases on the code + simulator of the Environment
- Evaluate coverage level on the code and on the abstract model

•	٨	0	c	D	E	F	G
	1 Espressione TOSCA per settare	Econocciona TOSCA par accumara	Espressione TOSCA per verificare	CHD	Tino	Condizione	Espressione SdP (true=accitate falea=disaccitate)
	2 comando manuale Confermaton a dev1	Espressione rosce per assumere	Espressione rosck per venilcare	SDe02	Comando	da Banco	ISDR Y RIGHT & SDR Y LEET & ISDR TH LEET & ISDR TO LEE
	comando manualo Conformator a dev1			CDe02	Comando	da Banco	COD Y DIGHT & ICOD Y LEET & ICOD TO LEET & ICOD TO LEE
	 comando manuale Conternator a devi comando manuale Thn a devi 			SDe02	Comando	da Banco	ISDP_X_RIGHT & SDP_X_LEFT & SDP_T0_LEFT & SDP_TC_LEFT
-	 comando manuale Ton a devi comando manuale Tor a devi 			SDe02	Comando	da Banco	SDP_A_RIGHT & SDP_A_LEFT & SDP_T0_LEFT & SDP_TC_LEF
-	 comando manuale Tor a devi comando manuale Tor a devi 			CD=02	Comando	da Danco	SDP_X_RIGHT & SDP_X_LEFT & SDP_ID_LEFT & SDP_IC_LEF
	comando manuale Ter a dev1			SDe02	Comando	de Benee	SOP_A_RIGHT & SOP_A_LEFT & SOP_ID_LEFT & SOP_IC_LEF
-	 comando manuale ficha devi comando manuale Ticha devi 			SDe02	Comando	da Banco	SDP_A_RIGHT & SDP_A_LEFT & SDP_ID_LEFT & SDP_IC_LEF
	 comando manuale Totor a devi comendo menuale Totor e devit 			SDe02	Comando	da Banco	SDP_A_RIGHT & SDP_A_LEFT & SDP_TD_LEFT & SDP_TC_LEF
-	 comando manuale líbici a devi comando manuale Eurorienemente, automotico e d 	eu d		SDe02	Comando	da Banco	SDP_A_RIGHT & SDP_A_LEFT & SDP_T0_LEFT & SDP_TC_LEF
-	10 comando manuale Funzionamento_automatico a di 10 comando manuale Pto a da1	601		SDe02	Comando	da Banco	SDP_X_RIGHT & SDP_X_LEFT
-	comando manuale Rte a rte1			SDe02	Comando	da Banco	SDP_16_LEFT
-	12 comando manuale Alimentazio a devi			SDe02	Comando	impulsivo d	SDP_ALIM_Impulso
1	13 comando manuale Disalimentazione a dev1			SDe02	Comando	impulsivo di	SDP_DISAL_impulso
1	14 comando manuale Attivazione_pesante a iti			SDe02	Comando	impulsivo di	SDP_Attivazione_iti_N_impulso
1	15 comando manuale Attivazione_pesante a lb2			SDe02	Comando	impulsivo di	SDP_Attivazione_iti_R_impulso
1	16 comando manuale Distruzione_pesante a po1			SDe02	Comando	impulsivo di	SDP_Distruzione_iti_N_impulso
1	17 comando manuale Distruzione_pesante a po2			SDe02	Comando	impulsivo di	SDP_Distruzione_iti_R_impulso
1	18 applica forzatura frz_fuori_controllo_elettrico a dev3	assumi che posizione di dev1 sia uguale a nope		SDe02	Comando	Stub	SDP_frz_fuori_controllo_elettrico
1	19 rimuovi forzatura frz_fuori_controllo_elettrico da dev	1		SDe02	Comando	Stub	ISDP_frz_fuori_controllo_elettrico
2	20 applica forzatura frz_no_pos_normale a dev1	assumi che posizione di dev1 sia diverso da sinistra		SDe02	Comando	Stub	SDP_frz_no_pos_normale
2	21 rimuovi forzatura frz_no_pos_normale da dev1			SDe02	Comando	Stub	ISDP_frz_no_pos_normale
2	22 applica forzatura frz_no_pos_rovescio a dev1	assumi che posizione di dev1 sia diverso da destra		SDe02	Comando	Stub	SDP_frz_no_pos_rovescio
2	23 rimuovi forzatura frz_no_pos_rovescio da dev1			SDe02	Comando	Stub	ISDP_frz_no_pos_rovescio
2	24 applica forzatura frz_non_cambia_posiz a dev1			SDe02	Comando	Stub	SDP_frz_non_cambia_posiz
2	25 rimuovi forzatura frz_non_cambia_posiz da dev1			SDe02	Comando	Stub	ISDP_frz_non_cambia_posiz
2	26 applica forzatura frz_non_si_diseccita a ele1	assumi che basso di ele1 sia uguale a false		SDe02	Comando	Stub	SDP_frz_non_si_diseccita
2	27 rimuovi forzatura frz_non_si_diseccita da ele1			SDe02	Comando	Stub	ISDP_frz_non_si_diseccita
2	28 applica forzatura frz_non_si_eccita a ele1	assumi che basso di ele1 sia uguale a true		SDe02	Comando	Stub	SDP_frz_non_si_eccita
2	29 rimuovi forzatura frz_non_si_eccita da ele1			SDe02	Comando	Stub	ISDP_frz_non_si_eccita
з	30		verifica che statocontrollo di dev1 sia	SDe02	Elemento	interno osse	ISDP_CDX_SX & ISDP_CDX_DX
3	31		verifica che statocontrollo di dev1 sia	SDe02	Elemento	interno osse	SDP_CDX_SX & ISDP_CDX_DX
3	32		verifica che statocontrollo di dev1 sia	SDe02	Elemento	interno osse	ISDP_CDX_SX & SDP_CDX_DX
3	33		verifica che statologico di dev1 sia ug	SDe02	Elemento	interno osse	SDP M normale
3	34		verifica che statologico di dev1 sia ug	SDe02	Elemento	interno osse	ISDP_M_normale
3	35	assumi che bloccatop di dev1 sia diverso da 0		SDe02	Input da a	ltre tavole	ISDP_bc ISDP_bp
3	36	assumi che bloccatop di dev1 sia uguale a 0		SDe02	Input da a	Itre tavole	SDP bc & SDP bp
3	37	assumi che conta prenotazioni n di dev1 sia diverso da	0	SDe02	Input da a	Itre tavole	SDP Cn
з	38	assumi che conta prenotazioni n di dev1 sia uguale a)	SDe02	Input da a	ltre tavole	ISDP_Cn
3	39	assumi che conta prenotazioni r di dev1 sia diverso da	0	SDe02	Input da a	Itre tavole	SDP Cr
4	40	assumi che conta prenotazioni r di dev1 sia uguale a 0		SDe02	Input da a	Itre tavole	ISDP_Cr
4	11 rimuovi forzatura frz occupazione da cdb1	assumi che libertaBinario di cdb1 sia uguale a true		SDe02	Input da a	Itre tavole/St	SDP CB
4	42 applica forzatura frz occupazione a cdb1	assumi che libertaBinario di cdb1 sia uguale a false		SDe02	Input da a	Itre tavole/SI	ISDP CB
4	43	assumi che alimentazione di dev1 sia uguale a true		SDe02	Input este	mo	SDP_IX

Mapping example

Mapping example

Α	: "command A";	
R ₃ .cl	: "assume Gate up";	
$\neg R_3.cl$: "assume Gate down";	
R ₅ .cl	: "assert Light On";	
$\neg R_5.cl$: "assert Light Off";	

mapping.json

<pre>step 0: // initial assume Gate down</pre>	state							
assert Light Off								
step 1: command A								
within 100 cycles:	assume Gate up							
within 100 cycles:	assert Light Off							
step 2:								
within 100 cycles:	assume Gate down							
within 100 cycles:	assert Light On							

test.atosca

Paths generator

- Random simulations
- subset-wise coverage of relays
- coverage of "negative and positive proofs" for each circuits:

Paths generator

- Random simulations
- subset-wise coverage of relays
- coverage of "negative and positive proofs" for each circuits: use AMS

Paths generator

- Random simulations
- subset-wise coverage of relays
- coverage of "negative and positive proofs" for each circuits: use AMS

For $p_1, p_2 \in 2^P$ and $in \in 2^I$:

$$\operatorname{witness}(p_1, \textit{in}, p_2) := \left\{ \pi \in \Pi_{\mathcal{M}} \ \Big| \ \pi \models \operatorname{F}\left((\phi_{\sigma} \land p_1) \land \left(\operatorname{G}\textit{in} \land \operatorname{X}(\neg \phi_{\sigma} \mathrel{\mathrm{U}}(\phi_{\sigma} \land p_2)) \right) \right) \right\}$$

For |P| = 1:

- Positive proofs : $\{\pi \mid \pi \in witness(p, in, \neg p)\}$
- Negative proofs : $\{\pi \mid \pi \in witness(p, in, p)\}$

Positive and negative proofs

46 paths extracted. Covering:

- 24 input combinations for which CBi does not change status
- 22 input combinations for which CBi changes status

Wrapping up

Plan of the talk

Making available the RRIS models

Ø Abstraction Modulo Stability

 $\textcircled{\textbf{3} Testing RRIS} \subseteq SwRIS$

A Remaining problems

Future directions

- Apply Abstraction Modulo Stability to LdS: symmetric checks
- \bullet What coverage criterion for Simulate guarantees to consider all RRIS behaviors?
- Use Abstraction Modulo Stability to generalize from instances to abstract concepts

Future directions

- Apply Abstraction Modulo Stability to LdS: symmetric checks
- What coverage criterion for Simulate guarantees to consider all RRIS behaviors?
- Use Abstraction Modulo Stability to generalize from instances to abstract concepts

